Evolution of proteasomal ATPases
In eukaryotic cells, the majority of proteins are degraded via the ATP-dependent ubiquitin/26S proteasome pathway. The proteasome is the proteolytic component of the pathway. It is a very large complex with a mass of around 2.5 MDa, consisting of at least 62 proteins encoded by 31 genes. The eukaryo...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2001-06, Vol.18 (6), p.962-974 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In eukaryotic cells, the majority of proteins are degraded via the ATP-dependent ubiquitin/26S proteasome pathway. The proteasome is the proteolytic component of the pathway. It is a very large complex with a mass of around 2.5 MDa, consisting of at least 62 proteins encoded by 31 genes. The eukaryotic proteasome has evolved from a simpler archaebacterial form, similar in structure but containing only three different peptides. One of these peptides is an ATPase belonging to the AAA (Triple-A) family of ATPASES: Gene duplication and diversification has resulted in six paralogous ATPases being present in the eukaryotic proteasome. While sequence analysis studies clearly show that the six eukaryotic proteasomal ATPases have evolved from the single archaebacterial proteasomal ATPase, the deep node structures of the phylogenetic constructions lack resolution. Incorporating physical data to provide support for alternative phylogenetic hypotheses, we have constructed a model of a possible evolutionary history of the proteasomal ATPASES: |
---|---|
ISSN: | 0737-4038 1537-1719 |
DOI: | 10.1093/oxfordjournals.molbev.a003897 |