Role of P-glycoprotein-mediated secretion in absorptive drug permeability : An approach using passive membrane permeability and affinity to P-glycoprotein

It has been shown in vivo and in vitro that P-glycoprotein (P-gp) may be able to influence the permeability of its substrates across biological membranes. However, the quantitative contribution of the secretion process mediated by P-gp on the overall permeability of membranes has not been determined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical sciences 1999-10, Vol.88 (10), p.1067-1072
Hauptverfasser: DOPPENSCHMITT, S, SPAHN-LANGGUTH, H, REGARDH, C. G, LANGGUTH, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been shown in vivo and in vitro that P-glycoprotein (P-gp) may be able to influence the permeability of its substrates across biological membranes. However, the quantitative contribution of the secretion process mediated by P-gp on the overall permeability of membranes has not been determined yet. In particular, observations need to be clarified in which substrates showing high affinity to P-glycoprotein, e.g., verapamil, apparently do not seem to be greatly influenced by P-gp in their permeability and consequently also with respect to their extent of GI-absorption after oral administration, whereas weaker substrates of P-gp, e.g., talinolol, have clearly shown P-gp-related absorption phenomena such as nonlinear intestinal permeability and bioavailability. Experiments with Caco-2 cell monolayers and mathematical simulations based on a mechanistic permeation model should aid in clarifying the underlying mechanism for these observations and quantifying the influence of passive membrane permeability and affinity to P-gp to the overall transmembrane drug flux. In addition, the concentration range of drug at which P-glycoprotein-mediated transport across the biological membrane is relevant should be examined. The permeability of various drugs in Caco-2 monolayers was determined experimentally and modeled using a combination of passive absorptive membrane permeability and a Michaelis-Menten-type transport process in the secretory direction. The passive permeabilities were experimentally obtained for the apical and basolateral membrane by efflux experiments using Caco-2 monolayers in the presence of a P-gp inhibitor. The Michaelis-Menten parameters were determined by a newly developed radioligand-binding assay for the quantification of drug affinity to P-gp. The model was able to accurately simulate the permeability of P-glycoprotein substrates, with differing passive membrane permeabilities and P-glycoprotein affinities. Using the outlined approach, permeability vs donor-concentration profiles were calculated, and the relative contribution of passive and active transport processes to the overall membrane permeability was evaluated. A model is presented to quantitatively describe and predict direction-dependent drug fluxes in Caco-2 monolayers by knowing the affinity of a compound to the exsorptive transporter P-gp and its passive membrane permeability. It was shown that a combination of high P-gp affinity with good passive membrane permeability, e.g., in
ISSN:0022-3549
1520-6017
DOI:10.1021/js980378j