Molecular Cloning and Characterization of a Novel Caspase-3 Variant That Attenuates Apoptosis Induced by Proteasome Inhibition
Caspase-3 plays an important role in programmed cell death as an execution-phase caspase in degradation of many substrate proteins. We identified a naturally occurring short caspase-3 variant (caspase-3s) from a human carcinoma cell line that is resulted from alternative mRNA splicing. Analysis of n...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2001-05, Vol.283 (4), p.762-769 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Caspase-3 plays an important role in programmed cell death as an execution-phase caspase in degradation of many substrate proteins. We identified a naturally occurring short caspase-3 variant (caspase-3s) from a human carcinoma cell line that is resulted from alternative mRNA splicing. Analysis of nucleotide sequence reveals a deletion of the exon 6 in this variant that resulted in an altered reading frame in the C-terminus, leading to an altered amino acid sequence and a truncated protein. Caspase-3s shares the same amino acid sequence as caspase-3 in the N-terminus containing the prodomain and the majority of the large subunit. The variant is 95 amino acid residues shorter at the C-terminus and is missing the conserved QACRG sequence in the catalytic site. Caspase-3 and caspase-3s are coexpressed in all human tissues examined. Several cancer cell lines also show coexpression of caspase-3 and caspase-3s, both at the mRNA and protein levels. Overexpression of caspase-3s in 293 cells is more resistant to apoptosis induced by proteasome inhibition. Furthermore, we identified that proteasome inhibition stabilized the level of caspase-3s. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1006/bbrc.2001.4871 |