In Vivo CD4+ T Cell Tolerance Induction Versus Priming Is Independent of the Rate and Number of Cell Divisions

In vitro studies have suggested that tolerance induction (i.e., anergy) is associated with an inability of T cells to proliferate vigorously upon Ag recognition. In vivo, the relationship between T cell proliferation and tolerance induction is less clear. To clarify this issue, we have been studying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2000-01, Vol.164 (2), p.649-655
Hauptverfasser: Adler, Adam J, Huang, Ching-Tai, Yochum, Gregory S, Marsh, David W, Pardoll, Drew M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In vitro studies have suggested that tolerance induction (i.e., anergy) is associated with an inability of T cells to proliferate vigorously upon Ag recognition. In vivo, the relationship between T cell proliferation and tolerance induction is less clear. To clarify this issue, we have been studying a model system in which naive CD4+ T cells specific for the model Ag hemagluttinin (HA) are adoptively transferred into different transgenic founder lines of mice expressing HA as a peripheral self-Ag. When transferred into two lines whose HA expression differs by at least 1000-fold, HA-specific T cells undergo multiple rounds of cell division before reaching a nonresponsive (i.e., tolerant) state. While the proliferative response is more rapid in mice expressing higher levels of HA, the T cells become tolerant regardless of the level of peripheral HA expression. When the T cells encounter HA expressed as a viral Ag, they proliferate at a similar rate and undergo the same number of divisions as with self-HA, but they do not become tolerant. These results indicate that a tolerizing stimulus can induce similar T cell mitotic rates as a priming stimulus. Therefore, CD4+ T cell tolerance induction in vivo is not the result of an insufficient proliferative response elicited upon TCR engagement.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.164.2.649