Oestrogens regulate pituitary alpha2,3-sialyltransferase messenger ribonucleic acid levels in the female rat

Follicle-stimulating hormone (FSH) is synthesized by the anterior pituitary gland in multiple molecular forms. Increased acidic/sialylated FSH charge isoforms are associated with conditions characterized by a low oestrogen output. In the present study, we analysed the dynamics of the changes in mRNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular endocrinology 1999-10, Vol.23 (2), p.153-165
Hauptverfasser: Damian-Matsumura, P, Zaga, V, Maldonado, A, Sanchez-Hernandez, C, Timossi, C, Ulloa-Aguirre, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Follicle-stimulating hormone (FSH) is synthesized by the anterior pituitary gland in multiple molecular forms. Increased acidic/sialylated FSH charge isoforms are associated with conditions characterized by a low oestrogen output. In the present study, we analysed the dynamics of the changes in mRNA levels of the enzyme Galbeta1,3[4]GlcNAc alpha2,3-sialyltransferase (2,3-STase) (one of the enzymes that incorporate sialic acid residues into the FSH molecule) in intact and ovariectomized rats. The anterior pituitaries of 4-day regularly cyclic adult female Wistar rats were obtained at 1000 h on the days of pro-oestrus (P), oestrus (O), dioestrus 1 (D1) and dioestrus 2 (D2), at 0200 h, 1400 h, 1800 h and 2200 h on D1, at 1800 h on day of O and at 1000 h after 7, 14, 21, 28 and 45 days of oophorectomy performed on the morning of P. Total RNA was isolated from each gland and the 2,3-STase levels were measured by Northern blot hybridization analysis employing a 346-base pair cDNA probe encoding for a non-conserved amino acid sequence of the catalytic domain of the enzyme. Maximal levels of the enzyme mRNA were detected at 1000 h on D1; thereafter, they progressively decreased by 60% during the ensuing 24 h, reaching the lowest concentration values (26% of the maximally observed level on D1) at 1000 h on day of P and remaining unchanged during the morning of O. Administration of the potent oestradiol receptor antagonist ICI 182,780 at 1000 h on D1 completely reverted the time-dependent decrease in 2,3-STase mRNA levels observed during the afternoon of D1, whereas oestradiol benzoate administered at 1000 h on day of O significantly reduced the enzyme mRNA levels (to 21% of the levels detected in vehicle-treated controls). In ovariectomized rats, the alpha2,3-STase mRNA progressively increased from day 21 to day 45 post castration. Administration of oestradiol benzoate on day 28 after oophorectomy significantly reduced the 2,3-STase mRNA levels (to 36% of the levels detected in vehicle-injected controls); ICI 182,780 partially counteracted this oestradiol-mediated effect. The dynamics of these changes in 2,3-STase mRNA levels partially correlated with changes in the relative abundance of the FSH charge isoforms separated by preparative chromatofocusing of anterior pituitary extracts, particularly in glands obtained during the morning of P and O. These data demonstrate for the first time that pituitary 2,3-STase is a hormonally-regulated enzyme and that the changes
ISSN:0952-5041
1479-6813
DOI:10.1677/jme.0.0230153