The passive DC conductivity of human tissues described by cells in solution

The electrical conductivity of human tissue at low frequencies is discussed when a uniform electric field is applied to some tissue containing many cells. Human tissue is described as a suspension of particles in a conducting solution. Relations are derived for the apparent conductivity of a cell su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2001-03, Vol.53 (2), p.155-160
Hauptverfasser: Peters, Maria J., Hendriks, Maikel, Stinstra, Jeroen G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electrical conductivity of human tissue at low frequencies is discussed when a uniform electric field is applied to some tissue containing many cells. Human tissue is described as a suspension of particles in a conducting solution. Relations are derived for the apparent conductivity of a cell surrounded by a membrane. These relations can be used to estimate the accuracy of a model that considers the cell as a non-conducting particle. Usually, a tissue is composed of several types of particles. A relationship that expresses the effective conductivity of a suspension of one type of ellipsoidal particles could be found in the literature. The orientation of the particles could be uniform or they could be randomly distributed. For non-conducting particles, this expression is known as Archie's law. The expression is extended such that also the effective conductivity of a suspension of various types of particles can be calculated. The result is evaluated for the cortex of the brain using experimental data given in the literature.
ISSN:1567-5394
1878-562X
DOI:10.1016/S0302-4598(00)00117-3