Genome-wide mapping with biallelic markers in Arabidopsis thaliana

Single-nucleotide polymorphisms, as well as small insertions and deletions (here referred to collectively as simple nucleotide polymorphisms, or SNPs), comprise the largest set of sequence variants in most organisms 1 , 2 . Positional cloning based on SNPs may accelerate the identification of human...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 1999-10, Vol.23 (2), p.203-207
Hauptverfasser: Cho, Raymond J., Mindrinos, Michael, Richards, Daniel R., Sapolsky, Ronald J., Anderson, Mary, Drenkard, Eliana, Dewdney, Julia, Reuber, T. Lynne, Stammers, Melanie, Federspiel, Nancy, Theologis, Athanasios, Yang, Wei-Hsien, Hubbell, Earl, Au, Melinda, Chung, Edward Y., Lashkari, Deval, Lemieux, Bertrand, Dean, Caroline, Lipshutz, Robert J., Ausubel, Frederick M., Davis, Ronald W., Oefner, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-nucleotide polymorphisms, as well as small insertions and deletions (here referred to collectively as simple nucleotide polymorphisms, or SNPs), comprise the largest set of sequence variants in most organisms 1 , 2 . Positional cloning based on SNPs may accelerate the identification of human disease traits and a range of biologically informative mutations 3 , 4 , 5 , 6 . The recent application of high-density oligonucleotide arrays to allele identification has made it feasible to genotype thousands of biallelic SNPs in a single experiment 3 , 7 . It has yet to be established, however, whether SNP detection using oligonucleotide arrays can be used to accelerate the mapping of traits in diploid genomes. The cruciferous weed Arabidopsis thaliana is an attractive model system for the construction and use of biallelic SNP maps. Although important biological processes ranging from fertilization and cell fate determination 8 , 9 , 10 , 11 to disease resistance 12 , 13 have been modelled in A. thaliana , identifying mutations in this organism has been impeded by the lack of a high-density genetic map consisting of easily genotyped DNA markers 14 . We report here the construction of a biallelic genetic map in A. thaliana with a resolution of 3.5 cM and its use in mapping Eds16 , a gene involved in the defence response to the fungal pathogen Erysiphe orontii. Mapping of this trait involved the high-throughput generation of meiotic maps of F 2 individuals using high-density oligonucleotide probe array-based genotyping. We developed a software package called InterMap and used it to automatically delimit Eds16 to a 7-cM interval on chromosome 1. These results are the first demonstration of biallelic mapping in diploid genomes and establish means for generalizing SNP-based maps to virtually any genetic organism.
ISSN:1061-4036
1546-1718
DOI:10.1038/13833