From Small-Molecule Reactions to Protein Folding: Studying Biochemical Kinetics by Stopped-Flow Electrospray Mass Spectrometry

This work introduces stopped-flow electrospray ionization (ESI) mass spectrometry (MS) as a method for studying fast biochemical reaction kinetics. After initiating a reaction by rapid mixing of two solutions, the mixture is transferred to a reaction vessel and a steady liquid flow to the ESI source...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical biochemistry 2001-05, Vol.292 (1), p.107-114
Hauptverfasser: Kolakowski, Beata M, Konermann, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work introduces stopped-flow electrospray ionization (ESI) mass spectrometry (MS) as a method for studying fast biochemical reaction kinetics. After initiating a reaction by rapid mixing of two solutions, the mixture is transferred to a reaction vessel and a steady liquid flow to the ESI source of the mass spectrometer is established. The kinetics are studied in real time by monitoring selected ion intensities as a function of time. In order to characterize the performance of this setup the acid-induced demetallation of chlorophyll a was studied. It was found that the reaction is second order in acid concentration and that pseudo-first-order rate constants of up to roughly 7 s−1 can be measured reliably. Stopped-flow ESI MS was also applied to study the acid-induced denaturation of myoglobin. The data presented here confirm the occurrence of a short-lived unfolding intermediate during this reaction. Stopped-flow ESI MS can provide information that is not accessible by optical rapid-mixing experiments. Therefore it appears that this novel technique has the potential to become a standard tool for kinetic studies in a number of different fields.
ISSN:0003-2697
1096-0309
DOI:10.1006/abio.2001.5062