Isolation of the Protein Kinase TAO2 and Identification of Its Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase Binding Domain

We previously reported the cloning of the thousand and one-amino acid protein kinase 1 (TAO1), a rat homolog of the Saccharomyces cerevisiae protein kinase sterile 20 protein. Here we report the complete sequence and properties of a related rat protein kinase TAO2. Like TAO1, recombinant TAO2 select...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1999-10, Vol.274 (40), p.28803-28807
Hauptverfasser: Chen, Zhu, Hutchison, Michele, Cobb, Melanie H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We previously reported the cloning of the thousand and one-amino acid protein kinase 1 (TAO1), a rat homolog of the Saccharomyces cerevisiae protein kinase sterile 20 protein. Here we report the complete sequence and properties of a related rat protein kinase TAO2. Like TAO1, recombinant TAO2 selectively activated mitogen-activated protein/extracellular signal-regulated kinase kinases (MEKs) 3, 4, and 6 of the stress-responsive mitogen-activated protein kinase pathways in vitro and copurified with MEK3 endogenous to Sf9 cells. To examine TAO2 interactions with MEKs, the MEK binding domain of TAO2 was localized to an ∼135-residue sequence just C-terminal to the TAO2 catalytic domain. In vitro this MEK binding domain associated with MEKs 3 and 6 but not MEKs 1, 2, or 4. Using chimeric MEK proteins, we found that the MEK N terminus was sufficient for binding to TAO2. Catalytic activity of full-length TAO2 enhanced its binding to MEKs. However, neither the autophosphorylation of the MEK binding domain of TAO2 nor the activity of MEK itself was required for MEK binding. These results suggest that TAO proteins lie in stress-sensitive kinase cascades and define a mechanism by which these kinases may organize downstream targets.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.40.28803