Identification of Fatty Acid Molecules in a Fasciola hepatica Immunoprophylactic Fatty Acid-Binding Protein

Fasciola hepatica adult flukes have a native protein complex denoted nFh12 and consisting of fatty acid binding proteins that comprise at least 8 isoforms. It is a potent immunogen because in several animal hosts it induces an early antibody response to F. hepatica infection. It is also a potent cro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of parasitology 2001-04, Vol.87 (2), p.426-428
Hauptverfasser: Espino, A. M, Hillyer, G. V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fasciola hepatica adult flukes have a native protein complex denoted nFh12 and consisting of fatty acid binding proteins that comprise at least 8 isoforms. It is a potent immunogen because in several animal hosts it induces an early antibody response to F. hepatica infection. It is also a potent cross-protective immunogen because it induces a protective immune response in mice to challenge infection with Schistosoma mansoni cercariae. The gene encoding this protein has been cloned and sequenced. It produces a polypeptide of 132 amino acids with a predicted molecular mass of 14.7 kDa and is denoted rFh15. It also has a significant homology to a 14-kDa S. mansoni fatty acid binding protein (Sm14). In the present study, nFh12 was delipidated with charcoal treatment and then studied by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Additionally, a lipid analysis of nFh12 was undertaken using gas chromatography–mass spectrometry to demonstrate that the nFh12 protein complex is, in fact, a complex of fatty acid binding proteins. Five long-chain saturated and unsaturated fatty acids were detected. The most abundant were palmitic acid (38%), stearic acid (24%), and oleic acid (13%). These fatty acid molecules do not have covalent bonds attached to the protein molecule. Because both nFh12 and Sm14 protect mice against challenge infection with F. hepatica and S. mansoni, it is possible that they have common protective epitopes in which fatty acids could be involved. Further studies are in progress to determine the chemical nature of these potential common epitopes.
ISSN:0022-3395
1937-2345
DOI:10.1645/0022-3395(2001)087[0426:IOFAMI]2.0.CO;2