Whole Cell Electrochemistry of Electricity-Producing Microorganisms Evidence an Adaptation for Optimal Exocellular Electron Transport

The mechanism(s) by which electricity-producing microorganisms interact with an electrode is poorly understood. Outer membrane cytochromes and conductive pili are being considered as possible players, but the available information does not concur to a consensus mechanism yet. In this work we demonst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2008-04, Vol.42 (7), p.2445-2450
Hauptverfasser: Busalmen, Juan Pablo, Esteve-Nuñez, Abraham, Feliu, Juan Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism(s) by which electricity-producing microorganisms interact with an electrode is poorly understood. Outer membrane cytochromes and conductive pili are being considered as possible players, but the available information does not concur to a consensus mechanism yet. In this work we demonstrate that Geobacter sulfurreducens cells are able to change the way in which they exchange electrons with an electrode as a response to changes in the applied electrode potential. After several hours of polarization at 0.1 V Ag/AgClKCl (saturated), the voltammetric signature of the attached cells showed a single redox pair with a formal redox potential of about −0.08 V as calculated from chronopotentiometric analysis. A similar signal was obtained from cells adapted to 0.4 V. However, new redox couples were detected after conditioning at 0.6 V. A large oxidation process beyond 0.5 V transferring a higher current than that obtained at 0.1 V was found to be associated with two reduction waves at 0.23 and 0.50 V. The apparent equilibrium potential of these new processes was estimated to be at about 0.48 V from programmed current potentiometric results. Importantly, when polarization was lowered again to 0.1 V for 18 additional hours, the signals obtained at 0.6 V were found to greatly diminish in amplitude, whereas those previously found at the lower conditioning potential were recovered. Results clearly show the reversibility of cell adaptation to the electrode potential and point to the polarization potential as a key variable to optimize energy production from an electricity producing population.
ISSN:0013-936X
1520-5851
DOI:10.1021/es702569y