Erk Is Essential for Growth, Differentiation, Integrin Expression, and Cell Function in Human Osteoblastic Cells
Extracellular signal-regulated kinases (Erks), members of the mitogen-activated protein kinase superfamily, play an important role in cell proliferation and differentiation. In this study we employed a dominant negative approach to determine the role of Erks in the regulation of human osteoblastic c...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2001-04, Vol.276 (17), p.14443-14450 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extracellular signal-regulated kinases (Erks), members of the mitogen-activated protein kinase superfamily, play an important
role in cell proliferation and differentiation. In this study we employed a dominant negative approach to determine the role
of Erks in the regulation of human osteoblastic cell function. Human osteoblastic cells were transduced with a pseudotyped
retrovirus encoding either a mutated Erk1 protein with a dominant negative action against both Erk1 and Erk2 (Erk1DN cells)
or the LacZ protein (LacZ cells) as a control. Both basal and growth factor-stimulated MAPK activity and cell proliferation
were inhibited in Erk1DN cells. Expression of Erk1DN protein suppressed both osteoblast differentiation and matrix mineralization
by decreasing alkaline phosphatase activity and the deposition of bone matrix proteins. Cell adhesion to collagen, osteopontin,
and vitronectin was decreased in Erk1DN cells as compared with LacZ cells. Cell spreading and migration on these matrices
were also inhibited. In Erk1DN cells, expression of αβ 1 , α v β 3 , and α v β 5 integrins on the surface was decreased. Metabolic labeling indicated that the synthesis of these integrins was inhibited
in Erk1DN cells. These data suggest that Erks are not only essential for the growth and differentiation of osteoblasts but
also are important for osteoblast adhesion, spreading, migration, and integrin expression. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M010021200 |