Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber
Silicone rubber is a frequently used biomaterial in biomedical devices and implants, yet highly prone to microbial adhesion and the development of a biomaterial-centered infection. Effective coating of silicone rubber to discourage microbial adhesion has thus far been impossible due to the hydrophob...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2008-07, Vol.64 (2), p.297-301 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silicone rubber is a frequently used biomaterial in biomedical devices and implants, yet highly prone to microbial adhesion and the development of a biomaterial-centered infection. Effective coating of silicone rubber to discourage microbial adhesion has thus far been impossible due to the hydrophobic character of its surface, surface deterioration upon treatment and instability of coatings under physiological conditions. Here we present a method to successfully grow polyacrylamide (PAAm) brushes from silicone rubber surfaces after removal of low molecular weight organic molecules (LMWOM), such as silane oligomers. PAAm brush coating did not cause any surface deterioration and discouraged microbial adhesion, even after 1-month exposure to physiological fluids. The method presented opens many new avenues for the use of silicone rubber as a biomaterial, without the risk of developing a biomaterial-centered infection. |
---|---|
ISSN: | 0927-7765 1873-4367 |
DOI: | 10.1016/j.colsurfb.2008.02.005 |