A Hydrophobic Region Locating at the Center of Fibroblast Growth Factor-9 Is Crucial for Its Secretion

Fibroblast growth factor (FGF)-9 is a glycosylated neurotrophic polypeptide highly expressed in brain. The mechanism for its secretion from expressing cells is unclear, because its primary structure lacks a cleavable signal sequence. We, therefore, investigated the mechanism and structural requireme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1999-10, Vol.274 (41), p.29352-29357
Hauptverfasser: Miyakawa, Kazuko, Hatsuzawa, Kiyotaka, Kurokawa, Tsutomu, Asada, Masahiro, Kuroiwa, Tomoko, Imamura, Toru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fibroblast growth factor (FGF)-9 is a glycosylated neurotrophic polypeptide highly expressed in brain. The mechanism for its secretion from expressing cells is unclear, because its primary structure lacks a cleavable signal sequence. We, therefore, investigated the mechanism and structural requirements for secretion of FGF-9. As with other secreted proteins, in vitrotranslation of FGF-9 was inhibited by signal recognition particle, which binds to the signal sequence. When translated in vitro, full-length FGF-9 was translocated into microsomes, glycosylated, and protected from trypsin digestion. By using various FGF-9 deletion mutants, we found that two hydrophobic domains, located at the N terminus and at the center of the FGF-9 primary structure, were crucial for translocation. Examination of various point mutants revealed that local hydrophobicity of the central hydrophobic domain, but not the N terminus, was crucial for translocation. Analogous results were obtained with respect to FGF-9 secretion from transfectant cells. Upon deletion of the complete sequence preceding it, the previously uncleavable hydrophobic domain appeared to serve as a cleavable signal sequence. Our results suggest that nascent FGF-9 polypeptides translocate into endoplasmic reticulum without peptide cleavage via a co-translational pathway in which both the N terminus and the central hydrophobic domain are important; thereafter, FGF-9 is glycosylated and secreted.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.41.29352