Ion Association in [bmim][PF6]/Naphthalene Mixtures: An Experimental and Computational Study

Mixtures of room temperature ionic liquids (IL) with neutral organic molecules provide a valuable testing ground to investigate the interplay of the ionic and molecular-dipolar state in dense Coulomb systems at near ambient conditions. In the present study, the viscosity η and the ionic conductivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2008-06, Vol.130 (22), p.7032-7041
Hauptverfasser: Del Pópolo, M. G, Mullan, C. L, Holbrey, J. D, Hardacre, C, Ballone, P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mixtures of room temperature ionic liquids (IL) with neutral organic molecules provide a valuable testing ground to investigate the interplay of the ionic and molecular-dipolar state in dense Coulomb systems at near ambient conditions. In the present study, the viscosity η and the ionic conductivity σ of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/naphthalene mixtures at T = 80 °C have been measured at 10 stoichiometries spanning the composition range from pure naphthalene to pure [bmim][PF6]. The viscosity grows nearly monotonically with increasing IL mole fraction (x), whereas the conductivity per ion displays a clear peak at x ≈ 15%. The origin of this maximum has been investigated using molecular dynamics simulations based on a classical force field. Snapshots of the simulated samples show that the conductivity maximum is due to the gradual transition in the IL component from an ionic state at high x to a dipolar fluid made of neutral ion pairs at low x. At concentrations x < 0.20 the ion pairs condense into molecular-thin filaments bound by dipolar forces and extending in between nanometric droplets of IL. These results are confirmed and complemented by the computation of dynamic and transport properties in [bmim][PF6]/naphthalene mixtures at low IL concentration.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja710841n