Heuristic and Linear Models of Judgment: Matching Rules and Environments

Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of as if linear models. Accepting the probabilistic nature of the en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological review 2007-07, Vol.114 (3), p.733-758
Hauptverfasser: Hogarth, Robin M, Karelaia, Natalia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 758
container_issue 3
container_start_page 733
container_title Psychological review
container_volume 114
creator Hogarth, Robin M
Karelaia, Natalia
description Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of as if linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used.
doi_str_mv 10.1037/0033-295X.114.3.733
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70749635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ769810</ericid><sourcerecordid>70749635</sourcerecordid><originalsourceid>FETCH-LOGICAL-a554t-de982e22e666a2a807b0f414132875f3e75435d5a4ee1ac2036ab5387b851eeb3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJSTZpfkFLMYUkJ28ljT6PIeSTLb200JsY2-Pi4LU30jqQf18tu2xKDtFFBz3zzswjxj4LPhcc7HfOAUrp9Z-5EGoOcwvwgc2EB18KZcUBm-2JI3ac0iPPR3h_yI6ENeA0VzN2cUdT7NK6qwscmmLRDYSx-DE21KdibIuHqfm7pGH9iX1ssU90urtP2O-b619Xd-Xi5-391eWiRK3VumzIO0lSkjEGJTpuK94qoQRIZ3ULZLUC3WhURAJrycFgpcHZymlBVMEJO9_mruL4NFFah2WXaup7HGicUrDcKm9AZ_DbG_BxnOKQZwtGKGWszju-A0mhZJbhbYZgC9VxTClSG1axW2J8CYKHjemw8Rg2HkM2HSBk07nq6y56qpbUvNbs1GbgbAdgqrFvIw51l14554V2ctP-y5aj2NX75-sHa7zL3fcxuMKwSi81xvxZPaUQ6fm_ef4B-WaYOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614467576</pqid></control><display><type>article</type><title>Heuristic and Linear Models of Judgment: Matching Rules and Environments</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Hogarth, Robin M ; Karelaia, Natalia</creator><creatorcontrib>Hogarth, Robin M ; Karelaia, Natalia</creatorcontrib><description>Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of as if linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/0033-295X.114.3.733</identifier><identifier>PMID: 17638504</identifier><identifier>CODEN: PSRVAX</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Bias ; Biological and medical sciences ; Causal Models ; Choice Behavior ; Cognition. Intelligence ; Cognitive Ability ; Decision Making ; Decision making. Choice ; Environmental Influences ; Fundamental and applied biological sciences. Psychology ; Grade Point Average ; Heuristic ; Heuristics ; Human ; Humans ; Judgment ; Linear Models ; Prediction ; Probability ; Probability Learning ; Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Systematic review</subject><ispartof>Psychological review, 2007-07, Vol.114 (3), p.733-758</ispartof><rights>2007 American Psychological Association</rights><rights>2007 INIST-CNRS</rights><rights>Copyright 2007 APA.</rights><rights>Copyright American Psychological Association Jul 2007</rights><rights>2007, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a554t-de982e22e666a2a807b0f414132875f3e75435d5a4ee1ac2036ab5387b851eeb3</citedby><orcidid>0000-0001-7671-8981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ769810$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18915827$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17638504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hogarth, Robin M</creatorcontrib><creatorcontrib>Karelaia, Natalia</creatorcontrib><title>Heuristic and Linear Models of Judgment: Matching Rules and Environments</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of as if linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used.</description><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Causal Models</subject><subject>Choice Behavior</subject><subject>Cognition. Intelligence</subject><subject>Cognitive Ability</subject><subject>Decision Making</subject><subject>Decision making. Choice</subject><subject>Environmental Influences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Grade Point Average</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Human</subject><subject>Humans</subject><subject>Judgment</subject><subject>Linear Models</subject><subject>Prediction</subject><subject>Probability</subject><subject>Probability Learning</subject><subject>Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Systematic review</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVJSTZpfkFLMYUkJ28ljT6PIeSTLb200JsY2-Pi4LU30jqQf18tu2xKDtFFBz3zzswjxj4LPhcc7HfOAUrp9Z-5EGoOcwvwgc2EB18KZcUBm-2JI3ac0iPPR3h_yI6ENeA0VzN2cUdT7NK6qwscmmLRDYSx-DE21KdibIuHqfm7pGH9iX1ssU90urtP2O-b619Xd-Xi5-391eWiRK3VumzIO0lSkjEGJTpuK94qoQRIZ3ULZLUC3WhURAJrycFgpcHZymlBVMEJO9_mruL4NFFah2WXaup7HGicUrDcKm9AZ_DbG_BxnOKQZwtGKGWszju-A0mhZJbhbYZgC9VxTClSG1axW2J8CYKHjemw8Rg2HkM2HSBk07nq6y56qpbUvNbs1GbgbAdgqrFvIw51l14554V2ctP-y5aj2NX75-sHa7zL3fcxuMKwSi81xvxZPaUQ6fm_ef4B-WaYOA</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Hogarth, Robin M</creator><creator>Karelaia, Natalia</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7671-8981</orcidid></search><sort><creationdate>20070701</creationdate><title>Heuristic and Linear Models of Judgment</title><author>Hogarth, Robin M ; Karelaia, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a554t-de982e22e666a2a807b0f414132875f3e75435d5a4ee1ac2036ab5387b851eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Causal Models</topic><topic>Choice Behavior</topic><topic>Cognition. Intelligence</topic><topic>Cognitive Ability</topic><topic>Decision Making</topic><topic>Decision making. Choice</topic><topic>Environmental Influences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Grade Point Average</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Human</topic><topic>Humans</topic><topic>Judgment</topic><topic>Linear Models</topic><topic>Prediction</topic><topic>Probability</topic><topic>Probability Learning</topic><topic>Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hogarth, Robin M</creatorcontrib><creatorcontrib>Karelaia, Natalia</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>PsycARTICLES</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hogarth, Robin M</au><au>Karelaia, Natalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ769810</ericid><atitle>Heuristic and Linear Models of Judgment: Matching Rules and Environments</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>114</volume><issue>3</issue><spage>733</spage><epage>758</epage><pages>733-758</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><coden>PSRVAX</coden><abstract>Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of as if linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>17638504</pmid><doi>10.1037/0033-295X.114.3.733</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-7671-8981</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-295X
ispartof Psychological review, 2007-07, Vol.114 (3), p.733-758
issn 0033-295X
1939-1471
language eng
recordid cdi_proquest_miscellaneous_70749635
source MEDLINE; EBSCOhost APA PsycARTICLES
subjects Bias
Biological and medical sciences
Causal Models
Choice Behavior
Cognition. Intelligence
Cognitive Ability
Decision Making
Decision making. Choice
Environmental Influences
Fundamental and applied biological sciences. Psychology
Grade Point Average
Heuristic
Heuristics
Human
Humans
Judgment
Linear Models
Prediction
Probability
Probability Learning
Psychology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Systematic review
title Heuristic and Linear Models of Judgment: Matching Rules and Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristic%20and%20Linear%20Models%20of%20Judgment:%20Matching%20Rules%20and%20Environments&rft.jtitle=Psychological%20review&rft.au=Hogarth,%20Robin%20M&rft.date=2007-07-01&rft.volume=114&rft.issue=3&rft.spage=733&rft.epage=758&rft.pages=733-758&rft.issn=0033-295X&rft.eissn=1939-1471&rft.coden=PSRVAX&rft_id=info:doi/10.1037/0033-295X.114.3.733&rft_dat=%3Cproquest_cross%3E70749635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614467576&rft_id=info:pmid/17638504&rft_ericid=EJ769810&rfr_iscdi=true