Heuristic and Linear Models of Judgment: Matching Rules and Environments
Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of as if linear models. Accepting the probabilistic nature of the en...
Gespeichert in:
Veröffentlicht in: | Psychological review 2007-07, Vol.114 (3), p.733-758 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 758 |
---|---|
container_issue | 3 |
container_start_page | 733 |
container_title | Psychological review |
container_volume | 114 |
creator | Hogarth, Robin M Karelaia, Natalia |
description | Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of
as if
linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used. |
doi_str_mv | 10.1037/0033-295X.114.3.733 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70749635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ769810</ericid><sourcerecordid>70749635</sourcerecordid><originalsourceid>FETCH-LOGICAL-a554t-de982e22e666a2a807b0f414132875f3e75435d5a4ee1ac2036ab5387b851eeb3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJSTZpfkFLMYUkJ28ljT6PIeSTLb200JsY2-Pi4LU30jqQf18tu2xKDtFFBz3zzswjxj4LPhcc7HfOAUrp9Z-5EGoOcwvwgc2EB18KZcUBm-2JI3ac0iPPR3h_yI6ENeA0VzN2cUdT7NK6qwscmmLRDYSx-DE21KdibIuHqfm7pGH9iX1ssU90urtP2O-b619Xd-Xi5-391eWiRK3VumzIO0lSkjEGJTpuK94qoQRIZ3ULZLUC3WhURAJrycFgpcHZymlBVMEJO9_mruL4NFFah2WXaup7HGicUrDcKm9AZ_DbG_BxnOKQZwtGKGWszju-A0mhZJbhbYZgC9VxTClSG1axW2J8CYKHjemw8Rg2HkM2HSBk07nq6y56qpbUvNbs1GbgbAdgqrFvIw51l14554V2ctP-y5aj2NX75-sHa7zL3fcxuMKwSi81xvxZPaUQ6fm_ef4B-WaYOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614467576</pqid></control><display><type>article</type><title>Heuristic and Linear Models of Judgment: Matching Rules and Environments</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Hogarth, Robin M ; Karelaia, Natalia</creator><creatorcontrib>Hogarth, Robin M ; Karelaia, Natalia</creatorcontrib><description>Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of
as if
linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/0033-295X.114.3.733</identifier><identifier>PMID: 17638504</identifier><identifier>CODEN: PSRVAX</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Bias ; Biological and medical sciences ; Causal Models ; Choice Behavior ; Cognition. Intelligence ; Cognitive Ability ; Decision Making ; Decision making. Choice ; Environmental Influences ; Fundamental and applied biological sciences. Psychology ; Grade Point Average ; Heuristic ; Heuristics ; Human ; Humans ; Judgment ; Linear Models ; Prediction ; Probability ; Probability Learning ; Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Systematic review</subject><ispartof>Psychological review, 2007-07, Vol.114 (3), p.733-758</ispartof><rights>2007 American Psychological Association</rights><rights>2007 INIST-CNRS</rights><rights>Copyright 2007 APA.</rights><rights>Copyright American Psychological Association Jul 2007</rights><rights>2007, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a554t-de982e22e666a2a807b0f414132875f3e75435d5a4ee1ac2036ab5387b851eeb3</citedby><orcidid>0000-0001-7671-8981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ769810$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18915827$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17638504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hogarth, Robin M</creatorcontrib><creatorcontrib>Karelaia, Natalia</creatorcontrib><title>Heuristic and Linear Models of Judgment: Matching Rules and Environments</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of
as if
linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used.</description><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Causal Models</subject><subject>Choice Behavior</subject><subject>Cognition. Intelligence</subject><subject>Cognitive Ability</subject><subject>Decision Making</subject><subject>Decision making. Choice</subject><subject>Environmental Influences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Grade Point Average</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Human</subject><subject>Humans</subject><subject>Judgment</subject><subject>Linear Models</subject><subject>Prediction</subject><subject>Probability</subject><subject>Probability Learning</subject><subject>Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Systematic review</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVJSTZpfkFLMYUkJ28ljT6PIeSTLb200JsY2-Pi4LU30jqQf18tu2xKDtFFBz3zzswjxj4LPhcc7HfOAUrp9Z-5EGoOcwvwgc2EB18KZcUBm-2JI3ac0iPPR3h_yI6ENeA0VzN2cUdT7NK6qwscmmLRDYSx-DE21KdibIuHqfm7pGH9iX1ssU90urtP2O-b619Xd-Xi5-391eWiRK3VumzIO0lSkjEGJTpuK94qoQRIZ3ULZLUC3WhURAJrycFgpcHZymlBVMEJO9_mruL4NFFah2WXaup7HGicUrDcKm9AZ_DbG_BxnOKQZwtGKGWszju-A0mhZJbhbYZgC9VxTClSG1axW2J8CYKHjemw8Rg2HkM2HSBk07nq6y56qpbUvNbs1GbgbAdgqrFvIw51l14554V2ctP-y5aj2NX75-sHa7zL3fcxuMKwSi81xvxZPaUQ6fm_ef4B-WaYOA</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Hogarth, Robin M</creator><creator>Karelaia, Natalia</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7671-8981</orcidid></search><sort><creationdate>20070701</creationdate><title>Heuristic and Linear Models of Judgment</title><author>Hogarth, Robin M ; Karelaia, Natalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a554t-de982e22e666a2a807b0f414132875f3e75435d5a4ee1ac2036ab5387b851eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Causal Models</topic><topic>Choice Behavior</topic><topic>Cognition. Intelligence</topic><topic>Cognitive Ability</topic><topic>Decision Making</topic><topic>Decision making. Choice</topic><topic>Environmental Influences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Grade Point Average</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Human</topic><topic>Humans</topic><topic>Judgment</topic><topic>Linear Models</topic><topic>Prediction</topic><topic>Probability</topic><topic>Probability Learning</topic><topic>Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hogarth, Robin M</creatorcontrib><creatorcontrib>Karelaia, Natalia</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>PsycARTICLES</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hogarth, Robin M</au><au>Karelaia, Natalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ769810</ericid><atitle>Heuristic and Linear Models of Judgment: Matching Rules and Environments</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>114</volume><issue>3</issue><spage>733</spage><epage>758</epage><pages>733-758</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><coden>PSRVAX</coden><abstract>Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of
as if
linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>17638504</pmid><doi>10.1037/0033-295X.114.3.733</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-7671-8981</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-295X |
ispartof | Psychological review, 2007-07, Vol.114 (3), p.733-758 |
issn | 0033-295X 1939-1471 |
language | eng |
recordid | cdi_proquest_miscellaneous_70749635 |
source | MEDLINE; EBSCOhost APA PsycARTICLES |
subjects | Bias Biological and medical sciences Causal Models Choice Behavior Cognition. Intelligence Cognitive Ability Decision Making Decision making. Choice Environmental Influences Fundamental and applied biological sciences. Psychology Grade Point Average Heuristic Heuristics Human Humans Judgment Linear Models Prediction Probability Probability Learning Psychology Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Systematic review |
title | Heuristic and Linear Models of Judgment: Matching Rules and Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristic%20and%20Linear%20Models%20of%20Judgment:%20Matching%20Rules%20and%20Environments&rft.jtitle=Psychological%20review&rft.au=Hogarth,%20Robin%20M&rft.date=2007-07-01&rft.volume=114&rft.issue=3&rft.spage=733&rft.epage=758&rft.pages=733-758&rft.issn=0033-295X&rft.eissn=1939-1471&rft.coden=PSRVAX&rft_id=info:doi/10.1037/0033-295X.114.3.733&rft_dat=%3Cproquest_cross%3E70749635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614467576&rft_id=info:pmid/17638504&rft_ericid=EJ769810&rfr_iscdi=true |