Heuristic and Linear Models of Judgment: Matching Rules and Environments

Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of as if linear models. Accepting the probabilistic nature of the en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological review 2007-07, Vol.114 (3), p.733-758
Hauptverfasser: Hogarth, Robin M, Karelaia, Natalia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Much research has highlighted incoherent implications of judgmental heuristics, yet other findings have demonstrated high correspondence between predictions and outcomes. At the same time, judgment has been well modeled in the form of as if linear models. Accepting the probabilistic nature of the environment, the authors use statistical tools to model how the performance of heuristic rules varies as a function of environmental characteristics. They further characterize the human use of linear models by exploring effects of different levels of cognitive ability. They illustrate with both theoretical analyses and simulations. Results are linked to the empirical literature by a meta-analysis of lens model studies. Using the same tasks, the authors estimate the performance of both heuristics and humans where the latter are assumed to use linear models. Their results emphasize that judgmental accuracy depends on matching characteristics of rules and environments and highlight the trade-off between using linear models and heuristics. Whereas the former can be cognitively demanding, the latter are simple to implement. However, heuristics require knowledge to indicate when they should be used.
ISSN:0033-295X
1939-1471
DOI:10.1037/0033-295X.114.3.733