High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences
A novel impedance spectroscopy technique has been developed for high speed single biological particle analysis. A microfluidic cytometer is used to measure the impedance of single micrometre sized latex particles at high speed across a range of frequencies. The setup uses a technique based on maximu...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2007-01, Vol.7 (8), p.1034-1040 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel impedance spectroscopy technique has been developed for high speed single biological particle analysis. A microfluidic cytometer is used to measure the impedance of single micrometre sized latex particles at high speed across a range of frequencies. The setup uses a technique based on maximum length sequence (MLS) analysis, where the time-dependent response of the system is measured in the time domain and transformed into the impulse response using fast M-sequence transform (FMT). Finally fast Fourier transform (FFT) is applied to the impulse response to give the transfer-function of the system in the frequency domain. It is demonstrated that the MLS technique can give multi-frequency (broad-band) measurement in a short time period (ms). The impedance spectra of polystyrene micro-beads are measured at 512 evenly distributed frequencies over a range from 976.5625 Hz to 500 kHz. The spectral information for each bead is obtained in approximately 1 ms. Good agreement is shown between the MLS data and both circuit simulations and conventional AC single frequency measurements. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/b703546b |