Synthesis of Diamond-Shape Titanate Molecular Sheets with Different Sizes and Realization of Quantum Confinement Effect during Dimensionality Reduction from Two to Zero

Synthesis of semiconductor nanoparticles with uniform shapes, sizes, and compositions in series with a gradual size reduction has not been achieved for two-dimensional molecular sheets. We report a large-scale (>2.6 g) synthesis of 0.75-nm-thick diamond-shape lepidocrocite-type titanate molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2008-05, Vol.130 (20), p.6534-6543
Hauptverfasser: Tae, Eunju Lee, Lee, Kee Eun, Jeong, Jong Seok, Yoon, Kyung Byung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesis of semiconductor nanoparticles with uniform shapes, sizes, and compositions in series with a gradual size reduction has not been achieved for two-dimensional molecular sheets. We report a large-scale (>2.6 g) synthesis of 0.75-nm-thick diamond-shape lepidocrocite-type titanate molecular sheets with the sizes decreasing from (27.3, 19.1) to (7.7, 5.5), where the numbers in parentheses represent the long and short diagonal lengths, respectively, in nm. This is the first example of synthesizing semiconductor nanoparticles in series with the dimensionality reduction from two to zero, without coating the surfaces with surface-passivating ligands. The titanate molecular sheets showed three exciton-absorption bands in the 4.0–6.5 eV region, the absorption energies of which increased with decreasing the area. Contrary to the common belief, the per-unit cell oscillator strengths gradually increased with increasing area and the per-particle oscillator strengths increased in proportion to the area. The average reduced exciton masses along the two diagonal axes were 0.10 and 0.11 m e, respectively, which were much smaller than those of bulk titanates (by 60–130 times). The estimated average Bohr radii along the two-diagonal axes were 4.8 and 4.3 nm, respectively.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja711467g