Simple Fitting of Energy-Resolved Reactive Cross Sections in Threshold Collision-Induced Dissociation (T-CID) Experiments

An operationally much simpler method for the extraction of thermochemical data from energy-resolved collision-induced dissociation cross sections, which is specifically designed for ligand binding energy determinations by tandem mass spectrometry, is presented. Compared to previous methods available...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2007-08, Vol.111 (30), p.7006-7013
Hauptverfasser: Narancic, Sanja, Bach, Andreas, Chen, Peter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An operationally much simpler method for the extraction of thermochemical data from energy-resolved collision-induced dissociation cross sections, which is specifically designed for ligand binding energy determinations by tandem mass spectrometry, is presented. Compared to previous methods available in the literature, the present method has three advantages:  (i) A more realistic treatment of the electrostatic potential for the approach of the ion to the collision partner leads to a better, nonempirical threshold function, allowing fitting of the cross section over the entire energy range rather than just the onset. (ii) Treatment of the kinetic shift with a new model for the density-of-states function eliminates the need for explicit entry of frequencies for the starting ion or the transition state without loss of accuracy relative to direct state counts. (iii) Data fitting using Monte Carlo simulation and a genetic algorithm instead of the usual Marquardt−Levenburg least-squares routines not only produces an equivalent fit but also produces statistically relevant error bounds on the derived fit parameters. Although the method is conceived for medium-to-large organometallic complexes, the theory is general enough to be appropriate for a wide range of binding phenomena of a small molecule to a larger one observed in mass spectrometry.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp072092l