NeuroD1: developmental expression and regulated genes in the rodent pineal gland

NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2007-08, Vol.102 (3), p.887-899
Hauptverfasser: Muñoz, Estela M, Bailey, Michael J, Rath, Martin F, Shi, Qiong, Morin, Fabrice, Coon, Steven L, Møller, Morten, Klein, David C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which time it is also detectable in other brain regions. Expression in the pineal gland increases during the embryonic period and is maintained thereafter at levels equivalent to those found in the cerebellum and retina. In contrast, NeuroD1 mRNA decreases markedly in non-cerebellar brain regions during development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p < 0.05) and 16 that are up-regulated (>twofold, p < 0.05). According to quantitative RT-PCR, the most dramatically down-regulated gene is kinesin family member 5C (~100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 (~fourfold). Other impacted transcripts encode proteins involved in differentiation, development, signal transduction and trafficking. These findings represent the first step toward elucidating the role of NeuroD1 in the rodent pinealocyte.
ISSN:0022-3042
1471-4159
DOI:10.1111/j.1471-4159.2007.04605.x