3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3

Patients with glutaryl-CoA dehydrogenase (GCDH) deficiency accumulate glutaric acid (GA) and 3-hydroxyglutaric acid (3OH-GA) in their blood and urine. To identify the transporter mediating the translocation of 3OH-GA through membranes, kidney tissue of Gcdh-/- mice have been investigated because of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular medicine (Berlin, Germany) Germany), 2007-07, Vol.85 (7), p.763-770
Hauptverfasser: STELLMER, Franziska, KEYSER, Britta, GOODMAN, Stephen I, LUKACS, Zoltan, ULLRICH, Kurt, BURCKHARDT, Gerhard, BRAULKE, Thomas, MÜHLHAUSEN, Chris, BURCKHARDT, Birgitta C, KOEPSELL, Hermann, STREICHERT, Thomas, GLATZEL, Markus, JABS, Sabrina, THIEM, Joachim, HERDERING, Wilhelm, KOELLER, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Patients with glutaryl-CoA dehydrogenase (GCDH) deficiency accumulate glutaric acid (GA) and 3-hydroxyglutaric acid (3OH-GA) in their blood and urine. To identify the transporter mediating the translocation of 3OH-GA through membranes, kidney tissue of Gcdh-/- mice have been investigated because of its central role in urinary excretion of this metabolite. Using microarray analyses of kidney-expressed genes in Gcdh-/- mice, several differentially expressed genes encoding transporter proteins were identified. Real-time polymerase chain reaction analysis confirmed the upregulation of the sodium-dependent dicarboxylate cotransporter 3 (NaDC3) and the organic cation transporter 2 (OCT2). Expression analysis of NaDC3 in Xenopus laevis oocytes by the two-electrode-voltage-clamp technique demonstrated the sodium-dependent translocation of 3OH-GA with a K (M) value of 0.95 mM. Furthermore, tracer flux measurements in Chinese hamster ovary cells overexpressing OCT2 showed that 3OH-GA inhibited significantly the uptake of methyl-4-phenylpyridinium, whereas 3OH-GA is not transported by OCT2. The data demonstrate for the first time the membrane translocation of 3OH-GA mediated by NaDC3 and the cis-inhibitory effect on OCT2-mediated transport of cations.
ISSN:0946-2716
1432-1440
DOI:10.1007/s00109-007-0174-5