A scaffold cell seeding method driven by surface acoustic waves

Abstract Surface acoustic waves (SAW) have been employed to drive a particle suspension into a porous scaffold as a means for cell seeding. Straight, simple interdigital electrode structures were fabricated on lithium niobate to permit the generation of Rayleigh SAW radiation. Fluorescent microscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2007-10, Vol.28 (28), p.4098-4104
Hauptverfasser: Li, Haiyan, Friend, James R, Yeo, Leslie Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Surface acoustic waves (SAW) have been employed to drive a particle suspension into a porous scaffold as a means for cell seeding. Straight, simple interdigital electrode structures were fabricated on lithium niobate to permit the generation of Rayleigh SAW radiation. Fluorescent microscopy was used to investigate the seeding process; the SAW-driven seeding process occurred in approximately 10 s, much quicker than if the scaffold were to be seeded by gravity-driven diffusional processes alone (>30 min). Analysis of high-speed micrographic images demonstrated that the SAW method could also drive particles deeper into the scaffold, thereby significantly improving the uniformity of the particle distribution. The proposed SAW technique therefore offers a promising technology to dramatically improve the speed and uniformity of cell seeding in scaffolds, which might contribute to rapid and uniform tissue regeneration.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2007.06.005