A Genetic Algorithm Approach to Probing the Evolution of Self-Organized Nanostructured Systems

We present a new methodology, based on a combination of genetic algorithms and image morphometry, for matching the outcome of a Monte Carlo simulation to experimental observations of a far-from-equilibrium nanosystem. The Monte Carlo model used simulates a colloidal solution of nanoparticles drying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2007-07, Vol.7 (7), p.1985-1990
Hauptverfasser: Siepmann, Peter, Martin, Christopher P, Vancea, Ioan, Moriarty, Philip J, Krasnogor, Natalio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new methodology, based on a combination of genetic algorithms and image morphometry, for matching the outcome of a Monte Carlo simulation to experimental observations of a far-from-equilibrium nanosystem. The Monte Carlo model used simulates a colloidal solution of nanoparticles drying on a solid substrate and has previously been shown to produce patterns very similar to those observed experimentally. Our approach enables the broad parameter space associated with simulated nanoparticle self-organization to be searched effectively for a given experimental target morphology.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl070773m