Efficient computation of quadratic-phase integrals in optics

We present a fast NlogN time algorithm for computing quadratic-phase integrals. This three-parameter class of integrals models propagation in free space in the Fresnel approximation, passage through thin lenses, and propagation in quadratic graded-index media as well as any combination of any number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2006, Vol.31 (1), p.35-37
Hauptverfasser: OZAKTAS, Haldun M, KOC, Aykut, SARI, Ilkay, KUTAY, M. Alper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a fast NlogN time algorithm for computing quadratic-phase integrals. This three-parameter class of integrals models propagation in free space in the Fresnel approximation, passage through thin lenses, and propagation in quadratic graded-index media as well as any combination of any number of these and is therefore of importance in optics. By carefully managing the sampling rate, one need not choose N much larger than the space-bandwidth product of the signals, despite the highly oscillatory integral kernel. The only deviation from exactness arises from the approximation of a continuous Fourier transform with the discrete Fourier transform. Thus the algorithm computes quadratic-phase integrals with a performance similar to that of the fast-Fourier-transform algorithm in computing the Fourier transform, in terms of both speed and accuracy.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.31.000035