Constructing a speculative kernel machine for pattern classification

We propose and investigate the performance of a new geometry-based algorithm designed to identify potentially informative data points for classification. An incremental QR update scheme is used to build a classifier using a subset of these points as radial basis function centers. The minimum descrip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2006, Vol.19 (1), p.84-89
Hauptverfasser: Choudhury, Arindam, Nair, Prasanth B., Keane, Andy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and investigate the performance of a new geometry-based algorithm designed to identify potentially informative data points for classification. An incremental QR update scheme is used to build a classifier using a subset of these points as radial basis function centers. The minimum descriptive length and the leave-one-out error criteria are employed for automatic model selection. The proposed scheme is shown to generate parsimonious models, which perform generalization comparable to the state-of-the-art support and relevance vector machines.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2005.06.051