Activation of refractory T cell responses against hepatitis C virus core protein by ablation of interfering hydrophobic domains
Hepatitis C virus (HCV) is the major pathogen of chronic hepatitis and liver disease, but currently there are no prophylactic HCV vaccines available. The HCV core protein-encoding sequence is among the most conserved genes in the HCV genome, making it a prime candidate for a component of a vaccine....
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2006-02, Vol.13 (2), p.338-346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hepatitis C virus (HCV) is the major pathogen of chronic hepatitis and liver disease, but currently there are no prophylactic HCV vaccines available. The HCV core protein-encoding sequence is among the most conserved genes in the HCV genome, making it a prime candidate for a component of a vaccine. The core protein localizes to the endoplasmic reticulum (ER) through a C-terminal hydrophobic region that is cotranslationally inserted into the ER membrane. Here we show that removal of the C-terminal hydrophobic region confers nuclear localization and enhances proteasomal degradation of the core protein in mammalian cells. This efficient protein proteolysis induces enhanced core-specific CD8(+) T cell responses in BALB/c mice immunized with plasmids expressing C-terminal deletions of the HCV core protein. These results suggest that more potent HCV vaccines can be achieved by targeting the core protein for proteasomal degradation by deletion of its C-terminal hydrophobic domain. |
---|---|
ISSN: | 1525-0016 1525-0024 |
DOI: | 10.1016/j.ymthe.2005.09.005 |