The Accuracy of Cephalometric Tracing Superimposition

The purpose of this study was to compare the accuracy of 4 methods for cephalometric tracing superimposition. They are the FH@Porion method, S-N@Sella method, least-squared averaged 5 landmarks (LS-5) method, and manual geometric method. Eight lateral cephalometric radiographs were used. Cephalometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of oral and maxillofacial surgery 2006-02, Vol.64 (2), p.194-202
Hauptverfasser: Gliddon, Michael J., Xia, James J., Gateno, Jaime, Wong, Helena T.F., Lasky, Robert E., Teichgraeber, John F., Jia, Xiaolan, Liebschner, Michael A.K., Lemoine, Jeremy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to compare the accuracy of 4 methods for cephalometric tracing superimposition. They are the FH@Porion method, S-N@Sella method, least-squared averaged 5 landmarks (LS-5) method, and manual geometric method. Eight lateral cephalometric radiographs were used. Cephalometric tracing was performed by 2 examiners. One had extensive experience in landmark digitization while the other had minimal experience. The radiographs were scanned and the reference landmarks ANS, Point A, Point B, and Pogonion were digitized, creating 8 master tracings. Then 6 digital copies of each master tracing were made, 3 for each examiner. Subsequently, the examiners were asked to digitize and trace predetermined cranial base landmarks and structures. Tracings occurred at 1-month intervals. As a result, 3 separate tracings of each set were obtained from each examiner. The tracings of each set were superimposed using 4 different methods in the CASSOS software (SoftEnable Technology Ltd, Hong Kong SAR, China). For each method of superimposition, the coordinates of ANS, Point A, Point B, and Pogonion were recorded. Their means and variances were calculated. The variance represents the variability of the superimposition method. A general linear model for repeated measures was computed to test whether there were statistically significant differences among the 4 superimposition methods, 2 examiners, 4 reference landmarks, and 2 directions. Because the distribution of the variances was skewed, they were transformed to log variances. Finally, the errors of the superimposition in millimeters for each given examiner, superimposition method, reference landmark, and direction (X, Y) were calculated. There was a statistically significant difference in measurement variability among the 4 superimposition methods ( P < .001). For both examiners, the variability of the different superimposition methods from the highest to the lowest was: Frankfort Plane registered at Porion method, Sella-Nasion registered at Sella method, least-square averaged 5 landmarks method, and the manual geometric method. In addition, there was a statistically significant difference in the magnitude of superimposition errors between the 2 examiners ( P < .001). The experienced examiner was consistently more precise than the inexperienced examiner across all methods. Moreover, there was a statistically significant difference among 4 reference landmarks ( P < .001). For both examiners, the recorded v
ISSN:0278-2391
1531-5053
DOI:10.1016/j.joms.2005.10.028