An improved data acquisition method for electrical impedance tomography

Isaacson, Cheney and Seager have demonstrated that simultaneously applying trigonometric patterns of current to a circular electrode array optimizes the sensitivity of EIT to inner structure. We have found that it is less desirable to measure voltage at an electrode that also applies a current due t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological measurement 2001-02, Vol.22 (1), p.31-38
Hauptverfasser: Kerner, Todd E, Hartov, Alex, Osterman, K Sunshine, DeLorenzo, Christine, Paulsen, Keith D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isaacson, Cheney and Seager have demonstrated that simultaneously applying trigonometric patterns of current to a circular electrode array optimizes the sensitivity of EIT to inner structure. We have found that it is less desirable to measure voltage at an electrode that also applies a current due to variable contact impedance. In order to preserve the optimum sensitivity while minimizing the effect of electrode artefacts, we have devised an approach where we sequentially apply a current between each individual electrode and a separate, fixed ground while measuring voltages at all other electrodes for each consecutive current impulse. By adding weighted sums of both the applied currents and corresponding measured voltages from individual passes, we can synthesize trigonometric patterns of any spatial frequency. Since only one of the electrodes in any given acquired data set is used as a source, this approach significantly dilutes the effect of contact impedance on the resulting voltage measurements. We present simulated data showing the equivalency between the synthesized and actual trigonometric excitation patterns. In addition, we report experimental data, both in vitro and in vivo, that show improved results using this data acquisition technique.
ISSN:0967-3334
1361-6579
DOI:10.1088/0967-3334/22/1/305