β-Cell Differentiation from a Human Pancreatic Cell Line in Vitro and in Vivo

Cell transplantation therapy for diabetes is limited by an inadequate supply of cells exhibiting glucose-responsive insulin secretion. To generate an unlimited supply of human β-cells, inducibly transformed pancreatic β-cell lines have been created by expression of dominant oncogenes. The cell lines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular endocrinology (Baltimore, Md.) Md.), 2001-03, Vol.15 (3), p.476-483
Hauptverfasser: Dufayet de la Tour, Dominique, Halvorsen, Tanya, Demeterco, Carla, Tyrberg, Björn, Itkin-Ansari, Pamela, Loy, Mary, Yoo, Soon-Jib, Hao, Ergeng, Bossie, Stuart, Levine, Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell transplantation therapy for diabetes is limited by an inadequate supply of cells exhibiting glucose-responsive insulin secretion. To generate an unlimited supply of human β-cells, inducibly transformed pancreatic β-cell lines have been created by expression of dominant oncogenes. The cell lines grow indefinitely but lose differentiated function. Induction of β-cell differentiation was achieved by stimulating the signaling pathways downstream of the transcription factor PDX-1, cell-cell contact, and the glucagon-like peptide (GLP-1) receptor. Synergistic activation of those pathways resulted in differentiation into functional β-cells exhibiting glucose-responsive insulin secretion in vitro. Both oncogene-expressing and oncogene-deleted cells were transplanted into nude mice and found to exhibit glucose-responsive insulin secretion in vivo. The ability to grow unlimited quantities of human β-cells is a major step toward developing a cell transplantation therapy for diabetes.
ISSN:0888-8809
1944-9917
DOI:10.1210/mend.15.3.0604