Ionic Strength and pH-Induced Changes in the Immunoreactivity of Purified Soybean Glycinin and Its Relation to Protein Molecular Structure
This study examined the immunogenic response of glycinin under varying conditions of pH and ionic strength using enzyme-linked immunosorbent assay. Differential scanning calorimetric (DSC) analysis and Fourier transform infrared spectroscopy (FTIR) were used to investigate the conformational changes...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2007-07, Vol.55 (14), p.5819-5826 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study examined the immunogenic response of glycinin under varying conditions of pH and ionic strength using enzyme-linked immunosorbent assay. Differential scanning calorimetric (DSC) analysis and Fourier transform infrared spectroscopy (FTIR) were used to investigate the conformational changes induced as a result of these conditions, and the correlation with the changes observed in glycinin immunoreactivity were determined. A highly purified glycinin obtained by isoelectric precipitation followed by native preparative continuous flow electrophoresis was used for these studies. Purity was confirmed by two-dimensional-polyacrylamide gel electrophoresis and mass spectroscopy. DSC and FTIR results suggest that glycinin immunoreactivity is affected by changes in the tertiary and secondary packing of the protein, when flexibility, stability, and accessibility of certain substructures are modified. Aggregation and/or increased compactness of glycinin subcomponents could have potentially prevented epitopes from reacting with the IgG antibodies. Keywords: Soybeans; glycinin; 11S protein; immunoreactivity; antigenicity; protein conformation; structure; food allergy; food processing |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf070281v |