Unsupervised segmentation of continuous genomic data

The advent of high-density, high-volume genomic data has created the need for tools to summarize large datasets at multiple scales. HMMSeg is a command-line utility for the scale-specific segmentation of continuous genomic data using hidden Markov models (HMMs). Scale specificity is achieved by an o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2007-06, Vol.23 (11), p.1424-1426
Hauptverfasser: Day, Nathan, Hemmaplardh, Andrew, Thurman, Robert E., Stamatoyannopoulos, John A., Noble, William S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advent of high-density, high-volume genomic data has created the need for tools to summarize large datasets at multiple scales. HMMSeg is a command-line utility for the scale-specific segmentation of continuous genomic data using hidden Markov models (HMMs). Scale specificity is achieved by an optional wavelet-based smoothing operation. HMMSeg is capable of handling multiple datasets simultaneously, rendering it ideal for integrative analysis of expression, phylogenetic and functional genomic data. Availability: http://noble.gs.washington.edu/proj/hmmseg Contact: rthurman@u.washington.edu
ISSN:1367-4803
1367-4811
1460-2059
DOI:10.1093/bioinformatics/btm096