Unsupervised segmentation of continuous genomic data
The advent of high-density, high-volume genomic data has created the need for tools to summarize large datasets at multiple scales. HMMSeg is a command-line utility for the scale-specific segmentation of continuous genomic data using hidden Markov models (HMMs). Scale specificity is achieved by an o...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2007-06, Vol.23 (11), p.1424-1426 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The advent of high-density, high-volume genomic data has created the need for tools to summarize large datasets at multiple scales. HMMSeg is a command-line utility for the scale-specific segmentation of continuous genomic data using hidden Markov models (HMMs). Scale specificity is achieved by an optional wavelet-based smoothing operation. HMMSeg is capable of handling multiple datasets simultaneously, rendering it ideal for integrative analysis of expression, phylogenetic and functional genomic data.
Availability: http://noble.gs.washington.edu/proj/hmmseg
Contact: rthurman@u.washington.edu |
---|---|
ISSN: | 1367-4803 1367-4811 1460-2059 |
DOI: | 10.1093/bioinformatics/btm096 |