Micro- and Nanopatterned Star Poly(ethylene glycol) (PEG) Materials Prepared by UV-Based Imprint Lithography

A UV-based imprint lithography method is used for the direct surface structuring of hydrogel-based biomaterials, which are prepared from a family of tailor-made star poly(ethylene glycol) formulations. Bulk star poly(ethylene glycol) (PEG) hydrogels are fabricated by cross-linking acrylate-functiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2007-07, Vol.23 (14), p.7841-7846
Hauptverfasser: Lensen, Marga C, Mela, Petra, Mourran, Ahmed, Groll, Jürgen, Heuts, Jean, Rong, Haitao, Möller, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A UV-based imprint lithography method is used for the direct surface structuring of hydrogel-based biomaterials, which are prepared from a family of tailor-made star poly(ethylene glycol) formulations. Bulk star poly(ethylene glycol) (PEG) hydrogels are fabricated by cross-linking acrylate-functionalized star PEG macromolecules. Cross-linking is achieved by radical reactions initiated by UV irradiation. This UV-curable star PEG formulation allows templating of mold structures to yield a stable, stand-alone, elastomeric replica of the mold. In particular, when a secondary, soft mold is used that consists of a perfluorinated elastomer with inherent excellent release properties, nanometer-sized features (down to 100 nm) can be imprinted without specialized equipment. The applied UV-based imprint lithography is a fast and simple technique to employ for the direct topographic structuring of bulk PEG-based biomaterials. The UV-based imprinting into the star PEG prepolymer by means of a perfluorinated, soft mold can be carried out on the bench top, while nanoscale resolution is demonstrated.
ISSN:0743-7463
1520-5827
DOI:10.1021/la7007683