On a general model structure for macroscopic biological reaction rates

Macroscopic modelling of bioprocesses requires the determination of a biological reaction scheme and a kinetic model. The a priori selection of an appropriate kinetic model structure is usually made difficult by the lack of detailed bioprocess knowledge and the profusion of apparently similar biolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biotechnology 2007-06, Vol.130 (3), p.253-264
Hauptverfasser: Grosfils, A., Vande Wouwer, A., Bogaerts, Ph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macroscopic modelling of bioprocesses requires the determination of a biological reaction scheme and a kinetic model. The a priori selection of an appropriate kinetic model structure is usually made difficult by the lack of detailed bioprocess knowledge and the profusion of apparently similar biological kinetic laws. Moreover, parameter identification is made arduous and time-consuming by the strong non-linearities involved in kinetic laws. In most cases, these kinetic structures are non-linearizable and no first parameter estimation can be deduced easily. In order to avoid such identification problems, Bogaerts et al. [Bogaerts, Ph., Castillo, J., Hanus, R., 1999. A general mathematical modelling technique for bioprocesses in engineering applications. Syst. Anal. Model. Simul. 35, 87–113] have developed a general linearizable kinetic structure which allows the representation of activation and/or inhibition effects of each component in the culture. This paper further generalizes this structure in order to improve the way saturation effects are taken into account, and in turn, improve the biological interpretation of the model parameters. The main advantage of the proposed structure lies in an associated systematic estimation procedure. The usefulness of the proposed model is tested with simulated as well as with experimental data.
ISSN:0168-1656
1873-4863
DOI:10.1016/j.jbiotec.2007.04.006