Host Responses to Plasmodium yoelii Hepatic Stages: A Paradigm in Host-Parasite Interaction
The liver stage of malaria, caused by the genus Plasmodium, is clinically silent, but immunologically significant. Ample evidence exists for an effective CD8(+) T cell response to this stage as well as the involvement of gammadeltaT cells and NK1.1(int) cells in immunized animal models. In contrast,...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2001-02, Vol.166 (3), p.1945-1950 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The liver stage of malaria, caused by the genus Plasmodium, is clinically silent, but immunologically significant. Ample evidence exists for an effective CD8(+) T cell response to this stage as well as the involvement of gammadeltaT cells and NK1.1(int) cells in immunized animal models. In contrast, there is little information concerning responses in a naive host. Here we report that several host gene expressions in the liver, spleen, and kidney of BALB/c mice are altered during the liver stage of Plasmodium yoelii infection. Really interesting new gene 3 (Ring3), semaphorin subclass 4 member G, glutamylcysteine synthetase, and p45 NF erythroid 2 were all up-regulated 24 h after infection with P. yoelii. Semaphorin subclass 4 member G expression was elevated in the kidney, whereas Ring3 was elevated in both spleen and kidney. The expression of TNF-alpha (TNF-alpha and IFN-gamma) were down-regulated in all three tissues tested except in infected spleen where IFN-gamma was elevated. P. yoelii-related host gene changes were compared with those in Toxoplasma gondii-infected livers. Ring3 expression increased 5-fold over control values, whereas expression of the other transcripts remained unchanged. TNF-alpha and IFN-gamma expressions were increased in the Toxoplasma-infected livers. The uniform increase of Ring3 expression in both Plasmodium- and Toxoplasma-infected livers suggests an innate immune response against parasitic infections, whereas the other gene expression changes are consistent with Plasmodium parasite-specific responses. Taken together, these changes suggest the immune responses to P. yoelii infection are both parasite and organ specific. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.166.3.1945 |