Host Responses to Plasmodium yoelii Hepatic Stages: A Paradigm in Host-Parasite Interaction

The liver stage of malaria, caused by the genus Plasmodium, is clinically silent, but immunologically significant. Ample evidence exists for an effective CD8(+) T cell response to this stage as well as the involvement of gammadeltaT cells and NK1.1(int) cells in immunized animal models. In contrast,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2001-02, Vol.166 (3), p.1945-1950
Hauptverfasser: Lau, Audrey O. T, Sacci, John B., Jr, Azad, Abdu F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The liver stage of malaria, caused by the genus Plasmodium, is clinically silent, but immunologically significant. Ample evidence exists for an effective CD8(+) T cell response to this stage as well as the involvement of gammadeltaT cells and NK1.1(int) cells in immunized animal models. In contrast, there is little information concerning responses in a naive host. Here we report that several host gene expressions in the liver, spleen, and kidney of BALB/c mice are altered during the liver stage of Plasmodium yoelii infection. Really interesting new gene 3 (Ring3), semaphorin subclass 4 member G, glutamylcysteine synthetase, and p45 NF erythroid 2 were all up-regulated 24 h after infection with P. yoelii. Semaphorin subclass 4 member G expression was elevated in the kidney, whereas Ring3 was elevated in both spleen and kidney. The expression of TNF-alpha (TNF-alpha and IFN-gamma) were down-regulated in all three tissues tested except in infected spleen where IFN-gamma was elevated. P. yoelii-related host gene changes were compared with those in Toxoplasma gondii-infected livers. Ring3 expression increased 5-fold over control values, whereas expression of the other transcripts remained unchanged. TNF-alpha and IFN-gamma expressions were increased in the Toxoplasma-infected livers. The uniform increase of Ring3 expression in both Plasmodium- and Toxoplasma-infected livers suggests an innate immune response against parasitic infections, whereas the other gene expression changes are consistent with Plasmodium parasite-specific responses. Taken together, these changes suggest the immune responses to P. yoelii infection are both parasite and organ specific.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.166.3.1945