Isolation and partial characterization of pigment-like antibiotics produced by a new strain of Streptosporangium isolated from an Algerian soil

Identification of a new actinomycete strain Sg3, belonging to the genus Streptosporangium and partial characterization of the produced antibacterial activities. The strain Sg3 was isolated from an Algerian Saharan soil and identified by morphological, chemotaxonomic and phylogenetic analyses to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2007-07, Vol.103 (1), p.228-236
Hauptverfasser: Boudjella, H, Bouti, K, Zitouni, A, Mathieu, F, Lebrihi, A, Sabaou, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identification of a new actinomycete strain Sg3, belonging to the genus Streptosporangium and partial characterization of the produced antibacterial activities. The strain Sg3 was isolated from an Algerian Saharan soil and identified by morphological, chemotaxonomic and phylogenetic analyses to the genus Streptosporangium. The comparison of its physiological characteristics with those of known species of Streptosporangium showed significant differences with the nearest species Streptosporangium carneum. Analysis of the 16S rDNA sequence of strain Sg3 showed a similarity level ranging between 97% and 98·8% within Streptosporangium species, with S. carneum the most closely related. Strain Sg3 showed a red coloured antibacterial activity against gram-positive bacteria on several culture media. The purification of the red pigment by chromatographic methods led to the isolation of three active products. The ¹H nuclear magnetic resonance (NMR), mass, infrared (IR) and ultraviolet-visible (UV-VIS) data of these molecules strongly suggested that they belonged to the quinone-anthracycline group with three or more rings. Strain Sg3 represents a distinct phyletic line suggesting a new genomic species. It produces antibacterial activities identified as quinone-anthracycline aromatics. The quinone-anthracycline antibiotics are known for their antimicrobial and antineoplastic activities and are used in chemotherapy for the treatment of many cancer diseases. The present work constitutes the first stage of a whole series of studies to be realized on these antibiotics before arriving at a possible application.
ISSN:1364-5072
1365-2672
DOI:10.1111/j.1365-2672.2006.03280.x