The role of spinal cholecystokinin B receptors in thermal allodynia and hyperalgesia in diabetic mice

We examined the tail-flick response to various heat intensities in diabetic and non-diabetic mice. Heat intensities were set to one of six values by adjusting the source of voltage for a 50-W projection bulb to 20, 25, 35, 50, 65 and 80 V. Tail-flick latencies at source voltages of 35 and 50 V in di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2001-02, Vol.892 (2), p.370-375
Hauptverfasser: Kamei, Junzo, Zushida, Ko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examined the tail-flick response to various heat intensities in diabetic and non-diabetic mice. Heat intensities were set to one of six values by adjusting the source of voltage for a 50-W projection bulb to 20, 25, 35, 50, 65 and 80 V. Tail-flick latencies at source voltages of 35 and 50 V in diabetic mice were significantly shorter than those in non-diabetic mice. However, tail-flick latencies at 25, 65 and 80 V in diabetic mice were not significantly altered. Although tail-flick latencies in non-diabetic mice were not affected by i.t. pre-treatment with CI-988, a selective cholecystokinin B (CCK B) receptor antagonist, those at 35 and 50 V in diabetic mice were significantly increased. In non-diabetic mice, i.t. pre-treatment with cholecystokinin octapeptide (CCK-8), at a dose of 0.3 ng, decreased tail-flick latencies at 35 and 50 V. Furthermore, the attenuation of tail-flick latencies induced by i.t. pre-treatment with CCK-8 in non-diabetic mice was reversed by i.t. pre-treatment with CI-988. Protein kinase C (PKC) activator phorbol-12, 13-dibutyrate (PDBu)-induced reduction in the tail-flick latencies at heat intensities of 35 and 50 V in non-diabetic mice was dose-dependently and significantly reversed by i.t. pre-treatment with CI-988. On the other hand, the CCK-8-induced thermal hyperalgesia and allodynia at heat intensities of 35 and 50 V in non-diabetic mice were inhibited when PKC activity was inhibited by i.t. pre-treatment with calphostin C. These results indicate that the thermal allodynia and hyperalgesia in diabetic mice may be due, at least in part, to the activation of CCK B receptors followed by the activation of PKC in the spinal cord.
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(00)03273-X