An antiparallel four-helix bundle orients the high-affinity RNA binding sites in hnRNP C: a mechanism for RNA chaperonin activity
Previous studies have shown that the C protein of 40 S hnRNP complexes contains a leucine-zipper domain, residues 180-207, and that a 40 residue highly basic domain, immediately preceding the zipper, is responsible for almost all of the free energy of RNA binding to C protein. Because this domain ar...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2001-01, Vol.305 (4), p.817-828 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies have shown that the C protein of 40 S hnRNP complexes contains a leucine-zipper domain, residues 180-207, and that a 40 residue highly basic domain, immediately preceding the zipper, is responsible for almost all of the free energy of RNA binding to C protein. Because this domain arrangement is like that seen in the bZIP transcription factors it has been termed the bZIP-like-motif or bZLM. We report here that the zipper domain drives C protein oligomerization through its spontaneous assembly into an anti-parallel four-helix bundle approximately 50 Å in length. The anti-parallel nature of the four-helix bundle positions the tetramer’s four high-affinity RNA binding domains at opposing ends of a rigid core formed by the helix bundle. This domain topology is ideally suited to accommodate and direct a double wrapping of RNA around the tetramer and is fully consistent with C protein’s ability to bind and order 230 nt lengths of pre-mRNA through a highly cooperative RNA binding mode. We have used a novel sequence-specific
13C/
15N labeling strategy and multidimensional NMR spectroscopy to define the anti-parallel orientation of the four-helix bundle and its molecular dimensions.
In vitro reconstitution and hydrodynamic studies on native C protein, on several C protein fragments, and on various synthetic peptides, are consistent with the proposed model and indicate that C protein’s canonical RNA recognition motifs probably function in tetramer-tetramer interactions during 40 S hnRNP assembly. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1006/jmbi.2000.4331 |