Cellular and molecular biology of atherosclerotic lesions
The association of atherosclerosis with the most common risk factors including elevation of low density lipoprotein (LDL) levels, diabetes, hypertension and cigarette smoking, led to the hypothesis of "response to injury" to explain how the lesions develop. According to this hypothesis, on...
Gespeichert in:
Veröffentlicht in: | Revista española de cardiologia 2001-02, Vol.54 (2), p.218-231 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The association of atherosclerosis with the most common risk factors including elevation of low density lipoprotein (LDL) levels, diabetes, hypertension and cigarette smoking, led to the hypothesis of "response to injury" to explain how the lesions develop. According to this hypothesis, one of the earliest events in atherogenesis is the accumulation of LDL in the arterial wall where they undergo oxidation. These LDL impair endothelial function, and thus, all the antiatherogenic properties of the endothelium. In addition, macrophages and smooth muscle cells take up these LDL, through different receptors, and become foam cells. The accumulation of foam cells in the arterial wall contributes to lesion development. Therefore, lesion development involves the activation of endothelial cells, as well as smooth muscle cells and monocytes/macrophages. In this activation different growth factors (PDGF, EGF, etc.), cytokines (IL-1b, TNFa, etc.) and the modified LDL themselves, play an important role. Through several signal transduction pathways these molecules activate transcription factors, such as the nuclear factor kappa B (NF-kB) or protooncogenes such as c-fos, c-myc, that regulate the expression of genes involved in the inflammatory/proliferative response of the lesions. |
---|---|
ISSN: | 0300-8932 |
DOI: | 10.1016/S0300-8932(01)76294-X |