Signaling pathways downstream of pattern-recognition receptors and their cross talk

Pattern-recognition receptors (PRRs) initiate innate immunity through pathogen recognition. Serum PRRs opsonize pathogens for enhanced phagocytic clearance. Toll-like receptors (TLRs) initiate common NF-kappaB/AP-1 and distinct IRF3/7 pathways to coordinate innate immunity and to initiate adaptive i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of biochemistry 2007-01, Vol.76 (1), p.447-480
Hauptverfasser: Lee, Myeong Sup, Kim, Young-Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pattern-recognition receptors (PRRs) initiate innate immunity through pathogen recognition. Serum PRRs opsonize pathogens for enhanced phagocytic clearance. Toll-like receptors (TLRs) initiate common NF-kappaB/AP-1 and distinct IRF3/7 pathways to coordinate innate immunity and to initiate adaptive immunity against diverse pathogens. Cytoplasmic caspase-recruiting domain (CARD) helicases, such as RIG-I/MDA5, mediate antiviral immunity by inducing the production of type I interferons via the adaptor IPS-1, whereas nucleotide-binding oligomerization domain (NOD)-like receptors mediate mainly antibacterial immunity by activating NF-kappaB or inflammasomes. Dectin-1 is important for antifungal immunity, promoting phagocytosis and activating NF-kappaB. Potentially harmful TLR signaling pathways can be negatively regulated by negative feedback mechanisms and also by anti-inflammatory factors such as TGFbeta, interleukin (IL)-10, and steroids. Many combinations of TLR-TLR and TLR-NOD modulate inflammatory responses. TLRs and NALP3 interplay to produce mature IL-1beta. Thus signaling pathways downstream of PRRs and their cross talk control immune responses in effective manners.
ISSN:0066-4154
1545-4509
DOI:10.1146/annurev.biochem.76.060605.122847