Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm
Abstract Using simulated falls performed under supervised conditions and activities of daily living (ADL) performed by elderly subjects, the ability to discriminate between falls and ADL was investigated using tri-axial accelerometer sensors, mounted on the trunk and thigh. Data analysis was perform...
Gespeichert in:
Veröffentlicht in: | Gait & posture 2007-07, Vol.26 (2), p.194-199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Using simulated falls performed under supervised conditions and activities of daily living (ADL) performed by elderly subjects, the ability to discriminate between falls and ADL was investigated using tri-axial accelerometer sensors, mounted on the trunk and thigh. Data analysis was performed using M ATLAB to determine the peak accelerations recorded during eight different types of falls. These included; forward falls, backward falls and lateral falls left and right, performed with legs straight and flexed. Falls detection algorithms were devised using thresholding techniques. Falls could be distinguished from ADL for a total data set from 480 movements. This was accomplished using a single threshold determined by the fall-event data-set, applied to the resultant-magnitude acceleration signal from a tri-axial accelerometer located at the trunk. |
---|---|
ISSN: | 0966-6362 1879-2219 |
DOI: | 10.1016/j.gaitpost.2006.09.012 |