Anatomic validation of a novel method for left ventricular volume and mass measurements with use of real-time 3-dimensional echocardiography

Assessment of left ventricular (LV) volumes and mass is a critical element in the evaluation of patients with cardiovascular disease. However, most non-invasive methods used for the quantitative measurements of LV volume and mass have important intrinsic limitations. Real-time 3-dimensional echocard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society of Echocardiography 2001, Vol.14 (1), p.1-10
Hauptverfasser: Schmidt, Michael A., Freidlin, Raisa Z., Ohazama, Chikai J., Jones, Michael, Laurienzo, Joy M., Brenneman, Cynthia L., Norman, James E., von Ramm, Olaf T., Panza, Julio A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assessment of left ventricular (LV) volumes and mass is a critical element in the evaluation of patients with cardiovascular disease. However, most non-invasive methods used for the quantitative measurements of LV volume and mass have important intrinsic limitations. Real-time 3-dimensional echocardiography (RT3D echo) is a new technique capable of acquiring volumetric images without cardiac or respiratory gating. The purpose of this study was to develop and validate a system for rapid LV volume and mass measurements with the use of RT3D echo images. To this end, in 11 explanted sheep hearts, the left ventricle was instrumented with a latex balloon and filled with known volumes of saline solution. Two independent observers made volume calculations from images acquired with RT3D echo. In addition, 21 open-chest sheep were imaged with RT3D echo for LV mass calculation. Anatomic LV mass was determined after removing the heart. A strong correlation was observed between the actual LV volumes and those calculated from the RT3D echo images ( r = 0.99; y = 1.31 + 0.98 x; standard error of the estimate = 2.2 mL). An analysis of intraobserver and interobserver variabilities revealed high indexes of agreement. A strong correlation was observed between actual LV mass and that calculated from RT3D echo images ( r = 0.94; y = 14.4 + 0.89 x; standard error of the estimate = 8.5 gm). Thus RT3D echo images allow rapid and accurate measurements of LV volume and mass. This technique may expand the use of cardiac ultrasonography for the quantitative assessment of heart disease.
ISSN:0894-7317
1097-6795
DOI:10.1067/mje.2001.108132