Memory for Context becomes Less Specific with Time
Context memories initially require the hippocampus, but over time become independent of this structure. This shift reflects a consolidation process whereby memories are gradually stored in distributed regions of the cortex. The function of this process is thought to be the extraction of statistical...
Gespeichert in:
Veröffentlicht in: | Learning & memory (Cold Spring Harbor, N.Y.) N.Y.), 2007-04, Vol.14 (4), p.313-317 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context memories initially require the hippocampus, but over time become independent of this structure. This shift reflects a consolidation process whereby memories are gradually stored in distributed regions of the cortex. The function of this process is thought to be the extraction of statistical regularities and general knowledge from specific experiences. The current study examined this idea in mice by measuring the specificity of context memories during consolidation. In the first experiment, separate groups of animals were trained with a single shock and tested in the training context or a novel environment 1, 14, 28, or 36 d later. We found a systematic increase in generalization over this period. Initially, mice froze more in the training context, but fear of the novel environment grew over time until animals eventually froze an equivalent amount in both contexts. The second experiment demonstrated that the increase in generalization was due to a loss of detailed information about the context and not fear incubation. In this experiment, mice were exposed to the context and then trained with an immediate shock 1 or 36 d later. Animals trained 1 d after exposure acquired robust context fear that did not generalize across environments. In contrast, mice trained 36 d after exposure froze an equivalent amount in the training context and the novel environment. The same profile was observed in H-ras mutants that exhibit enhanced hippocampal plasticity and learning. These results suggest that context memories are specific early after training when they require the hippocampus, and become more general as they are permanently stored in the cortex. |
---|---|
ISSN: | 1072-0502 1549-5485 |
DOI: | 10.1101/lm.430907 |