Ultrastructure of minor-vein phloem and assimilate export in summer and winter leaves of the symplasmically loading evergreens Ajuga reptans L., Aucuba japonica Thunb., and Hedera helix L

Minor-vein ultrastructure and sugar export were studied in mature summer and winter leaves of the three broadleaf-evergreen species Ajuga reptans var. artropurpurescens L., Aucuba japonica Thunb. and Hedera helix L. to assess temperature effects on phloem loading. Leaves of the perennial herb Ajuga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2001-01, Vol.212 (2), p.231-242
Hauptverfasser: Hoffmann-Thoma, Gudrun, van Bel, Aart J.E., Ehlers, Katrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minor-vein ultrastructure and sugar export were studied in mature summer and winter leaves of the three broadleaf-evergreen species Ajuga reptans var. artropurpurescens L., Aucuba japonica Thunb. and Hedera helix L. to assess temperature effects on phloem loading. Leaves of the perennial herb Ajuga exported substantial amounts of assimilates in form of raffinose-family oligosaccharides (RFOs). Its minorvein companion cells represent typical intermediary cells (ICs), with numerous small vacuoles and abundant plasmodesmal connectivity to the bundle sheath. The woody plants Hedera and Aucuba translocated sucrose as the dominant sugar species, and only traces of RFOs. Their minor-vein phloem possessed a layer of highly vacuolated cells (VCs) intervening between mesophyll and sieve elements. Depending on their location and ontogeny, VCs were classified either as companion or parenchyma cells. Both cell types showed symplasmic continuity to the adjacent mesophyll tissue although at a lower plasmodesmal frequency compared to the Ajuga ICs. p-Chloromercuribenzenesulfonic acid did not reduce leaf sugar export in any of the plants, indicating a symplasmic mode of phloem loading. Winter leaves did not show symptoms of frost injury, and the vacuolar pattern in ICs and VCs was equally prominent in both seasons. Starch accumulation as a result of reduced phloem loading was not observed to be triggered by low temperature. In contrast, high amounts of starch were found in mesophyll and bundle-sheath cells of summer leaves. Physiological data on season-dependent leaf exudation showed the maintenance of sugar export in cold-acclimated winter leaves.
ISSN:0032-0935
1432-2048
DOI:10.1007/s004250000382