Structural and Electronic Properties of Co-corrole, Co-corrin, and Co-porphyrin
A quantitative study of the structure and electronic properties of Co-corrole, Co-corrin, and Co-porphyrin, using density functional theory, is reported. The structure of each macrocycle is optimized, with no symmetry constraints, by considering different spin states. The ground-state structures and...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2001-01, Vol.40 (1), p.11-17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Inorganic chemistry |
container_volume | 40 |
creator | Rovira, Carme Kunc, Karel Hutter, Jürg Parrinello, Michele |
description | A quantitative study of the structure and electronic properties of Co-corrole, Co-corrin, and Co-porphyrin, using density functional theory, is reported. The structure of each macrocycle is optimized, with no symmetry constraints, by considering different spin states. The ground-state structures and spin states (S = 1 for Co-corrole, S = 0 for Co-corrin and S = 1/2 for Co-porphyrin) are in good agreement with the experimental data available. The trends in the sizes of the coordination cavities upon varying the inner metal atom and/or the macrocycle are analyzed and compared with those for the Fe-porphyrin we studied previously. Our results reveal that most of the distortion of the Co-corrin core in the B12 coenzyme is due to the inherent properties of Co-corrin. Quite different behaviors are found between corrinoids and porphyrins upon varying the spin state. While an increase in the metal−nitrogen (M−N) distance with spin state occurs in the porphyrins, the corrinoids show little variation in the M−N distance and, in some cases, undergo small structural changes in the ring structure. These results aid in understanding the often discussed question of why nature has chosen corrin/porphyrin for carrying out the particular biological functions identified in the B12 coenzyme. |
doi_str_mv | 10.1021/ic000143m |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70597808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70597808</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-cc8ed965f8b7b28907ccd659f15538dfa364faf64b80f5d4914dd6ea96513aa3</originalsourceid><addsrcrecordid>eNpt0E1LwzAYB_AgipvTg19AelEQVk3WJm2OOuYLDDdZD-IlpHnBzrapSQvu2xvtnBdPeZLn9zyBPwCnCF4hOEHXhYAQojiq9sAQ4QkMMYIv-2AIoa8RIXQAjpxbe0SjmByCAUKI4ogkQ7BYtbYTbWd5GfBaBrNSidaauhDB0ppG2bZQLjA6mJpQGGtNqca_dVGPf2b8tTG2edv4l2NwoHnp1Mn2HIHsbpZNH8L54v5xejMPeYxwGwqRKkkJ1mme5JOUwkQISTDVCOMolZpHJNZckzhPocYypiiWkijuR1DEeTQCF_3axpqPTrmWVYUTqix5rUznWAIxTVKYenjZQ2GNc1Zp1tii4nbDEGTf4bFdeN6ebZd2eaXkn9ym5UHYg8K16nPX5_ad-W6CWbZcsVuYkeeMPrFX7897z4Vja9PZ2kfyz8dfeDiE8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70597808</pqid></control><display><type>article</type><title>Structural and Electronic Properties of Co-corrole, Co-corrin, and Co-porphyrin</title><source>ACS Publications</source><source>MEDLINE</source><creator>Rovira, Carme ; Kunc, Karel ; Hutter, Jürg ; Parrinello, Michele</creator><creatorcontrib>Rovira, Carme ; Kunc, Karel ; Hutter, Jürg ; Parrinello, Michele</creatorcontrib><description>A quantitative study of the structure and electronic properties of Co-corrole, Co-corrin, and Co-porphyrin, using density functional theory, is reported. The structure of each macrocycle is optimized, with no symmetry constraints, by considering different spin states. The ground-state structures and spin states (S = 1 for Co-corrole, S = 0 for Co-corrin and S = 1/2 for Co-porphyrin) are in good agreement with the experimental data available. The trends in the sizes of the coordination cavities upon varying the inner metal atom and/or the macrocycle are analyzed and compared with those for the Fe-porphyrin we studied previously. Our results reveal that most of the distortion of the Co-corrin core in the B12 coenzyme is due to the inherent properties of Co-corrin. Quite different behaviors are found between corrinoids and porphyrins upon varying the spin state. While an increase in the metal−nitrogen (M−N) distance with spin state occurs in the porphyrins, the corrinoids show little variation in the M−N distance and, in some cases, undergo small structural changes in the ring structure. These results aid in understanding the often discussed question of why nature has chosen corrin/porphyrin for carrying out the particular biological functions identified in the B12 coenzyme.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic000143m</identifier><identifier>PMID: 11195367</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cobalt ; Corrinoids ; Metalloporphyrins - chemistry ; Models, Molecular ; Molecular Conformation ; Porphyrins - chemistry ; Structure-Activity Relationship</subject><ispartof>Inorganic chemistry, 2001-01, Vol.40 (1), p.11-17</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-cc8ed965f8b7b28907ccd659f15538dfa364faf64b80f5d4914dd6ea96513aa3</citedby><cites>FETCH-LOGICAL-a415t-cc8ed965f8b7b28907ccd659f15538dfa364faf64b80f5d4914dd6ea96513aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic000143m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic000143m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11195367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rovira, Carme</creatorcontrib><creatorcontrib>Kunc, Karel</creatorcontrib><creatorcontrib>Hutter, Jürg</creatorcontrib><creatorcontrib>Parrinello, Michele</creatorcontrib><title>Structural and Electronic Properties of Co-corrole, Co-corrin, and Co-porphyrin</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>A quantitative study of the structure and electronic properties of Co-corrole, Co-corrin, and Co-porphyrin, using density functional theory, is reported. The structure of each macrocycle is optimized, with no symmetry constraints, by considering different spin states. The ground-state structures and spin states (S = 1 for Co-corrole, S = 0 for Co-corrin and S = 1/2 for Co-porphyrin) are in good agreement with the experimental data available. The trends in the sizes of the coordination cavities upon varying the inner metal atom and/or the macrocycle are analyzed and compared with those for the Fe-porphyrin we studied previously. Our results reveal that most of the distortion of the Co-corrin core in the B12 coenzyme is due to the inherent properties of Co-corrin. Quite different behaviors are found between corrinoids and porphyrins upon varying the spin state. While an increase in the metal−nitrogen (M−N) distance with spin state occurs in the porphyrins, the corrinoids show little variation in the M−N distance and, in some cases, undergo small structural changes in the ring structure. These results aid in understanding the often discussed question of why nature has chosen corrin/porphyrin for carrying out the particular biological functions identified in the B12 coenzyme.</description><subject>Cobalt</subject><subject>Corrinoids</subject><subject>Metalloporphyrins - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Porphyrins - chemistry</subject><subject>Structure-Activity Relationship</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1LwzAYB_AgipvTg19AelEQVk3WJm2OOuYLDDdZD-IlpHnBzrapSQvu2xvtnBdPeZLn9zyBPwCnCF4hOEHXhYAQojiq9sAQ4QkMMYIv-2AIoa8RIXQAjpxbe0SjmByCAUKI4ogkQ7BYtbYTbWd5GfBaBrNSidaauhDB0ppG2bZQLjA6mJpQGGtNqca_dVGPf2b8tTG2edv4l2NwoHnp1Mn2HIHsbpZNH8L54v5xejMPeYxwGwqRKkkJ1mme5JOUwkQISTDVCOMolZpHJNZckzhPocYypiiWkijuR1DEeTQCF_3axpqPTrmWVYUTqix5rUznWAIxTVKYenjZQ2GNc1Zp1tii4nbDEGTf4bFdeN6ebZd2eaXkn9ym5UHYg8K16nPX5_ad-W6CWbZcsVuYkeeMPrFX7897z4Vja9PZ2kfyz8dfeDiE8g</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Rovira, Carme</creator><creator>Kunc, Karel</creator><creator>Hutter, Jürg</creator><creator>Parrinello, Michele</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010101</creationdate><title>Structural and Electronic Properties of Co-corrole, Co-corrin, and Co-porphyrin</title><author>Rovira, Carme ; Kunc, Karel ; Hutter, Jürg ; Parrinello, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-cc8ed965f8b7b28907ccd659f15538dfa364faf64b80f5d4914dd6ea96513aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cobalt</topic><topic>Corrinoids</topic><topic>Metalloporphyrins - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Porphyrins - chemistry</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rovira, Carme</creatorcontrib><creatorcontrib>Kunc, Karel</creatorcontrib><creatorcontrib>Hutter, Jürg</creatorcontrib><creatorcontrib>Parrinello, Michele</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rovira, Carme</au><au>Kunc, Karel</au><au>Hutter, Jürg</au><au>Parrinello, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Electronic Properties of Co-corrole, Co-corrin, and Co-porphyrin</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>40</volume><issue>1</issue><spage>11</spage><epage>17</epage><pages>11-17</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>A quantitative study of the structure and electronic properties of Co-corrole, Co-corrin, and Co-porphyrin, using density functional theory, is reported. The structure of each macrocycle is optimized, with no symmetry constraints, by considering different spin states. The ground-state structures and spin states (S = 1 for Co-corrole, S = 0 for Co-corrin and S = 1/2 for Co-porphyrin) are in good agreement with the experimental data available. The trends in the sizes of the coordination cavities upon varying the inner metal atom and/or the macrocycle are analyzed and compared with those for the Fe-porphyrin we studied previously. Our results reveal that most of the distortion of the Co-corrin core in the B12 coenzyme is due to the inherent properties of Co-corrin. Quite different behaviors are found between corrinoids and porphyrins upon varying the spin state. While an increase in the metal−nitrogen (M−N) distance with spin state occurs in the porphyrins, the corrinoids show little variation in the M−N distance and, in some cases, undergo small structural changes in the ring structure. These results aid in understanding the often discussed question of why nature has chosen corrin/porphyrin for carrying out the particular biological functions identified in the B12 coenzyme.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>11195367</pmid><doi>10.1021/ic000143m</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2001-01, Vol.40 (1), p.11-17 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_proquest_miscellaneous_70597808 |
source | ACS Publications; MEDLINE |
subjects | Cobalt Corrinoids Metalloporphyrins - chemistry Models, Molecular Molecular Conformation Porphyrins - chemistry Structure-Activity Relationship |
title | Structural and Electronic Properties of Co-corrole, Co-corrin, and Co-porphyrin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Electronic%20Properties%20of%20Co-corrole,%20Co-corrin,%20and%20Co-porphyrin&rft.jtitle=Inorganic%20chemistry&rft.au=Rovira,%20Carme&rft.date=2001-01-01&rft.volume=40&rft.issue=1&rft.spage=11&rft.epage=17&rft.pages=11-17&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic000143m&rft_dat=%3Cproquest_cross%3E70597808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70597808&rft_id=info:pmid/11195367&rfr_iscdi=true |