Structural and Electronic Properties of Co-corrole, Co-corrin, and Co-porphyrin

A quantitative study of the structure and electronic properties of Co-corrole, Co-corrin, and Co-porphyrin, using density functional theory, is reported. The structure of each macrocycle is optimized, with no symmetry constraints, by considering different spin states. The ground-state structures and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2001-01, Vol.40 (1), p.11-17
Hauptverfasser: Rovira, Carme, Kunc, Karel, Hutter, Jürg, Parrinello, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A quantitative study of the structure and electronic properties of Co-corrole, Co-corrin, and Co-porphyrin, using density functional theory, is reported. The structure of each macrocycle is optimized, with no symmetry constraints, by considering different spin states. The ground-state structures and spin states (S = 1 for Co-corrole, S = 0 for Co-corrin and S = 1/2 for Co-porphyrin) are in good agreement with the experimental data available. The trends in the sizes of the coordination cavities upon varying the inner metal atom and/or the macrocycle are analyzed and compared with those for the Fe-porphyrin we studied previously. Our results reveal that most of the distortion of the Co-corrin core in the B12 coenzyme is due to the inherent properties of Co-corrin. Quite different behaviors are found between corrinoids and porphyrins upon varying the spin state. While an increase in the metal−nitrogen (M−N) distance with spin state occurs in the porphyrins, the corrinoids show little variation in the M−N distance and, in some cases, undergo small structural changes in the ring structure. These results aid in understanding the often discussed question of why nature has chosen corrin/porphyrin for carrying out the particular biological functions identified in the B12 coenzyme.
ISSN:0020-1669
1520-510X
DOI:10.1021/ic000143m