Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity

Orexin-A and orexin-B are hypothalamic neuropeptides derived from a 130-amino acid precursor, prepro-orexin, and are potent agonists at both the orexin-1 (OX1) and orexin-2 (OX2) receptors. Orexin-A has been ascribed a number of in vivo functions in the rat after intracerebroventricular (ICV) admini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychopharmacologia 2001-01, Vol.153 (2), p.210-218
Hauptverfasser: JONES, Declan N. C, GARTLON, Jane, PORTER, Rod A, HAGAN, Jim J, HUNTER, A. Jackie, UPTON, Neil, PARKER, Frederick, TAYLOR, Stephen G, ROUTLEDGE, Carol, HEMMATI, Panida, MUNTON, Richard P, ASHMEADE, Tracey E, HATCHER, Jonathan P, JOHNS, Amanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orexin-A and orexin-B are hypothalamic neuropeptides derived from a 130-amino acid precursor, prepro-orexin, and are potent agonists at both the orexin-1 (OX1) and orexin-2 (OX2) receptors. Orexin-A has been ascribed a number of in vivo functions in the rat after intracerebroventricular (ICV) administration, including hyperphagia, neuroendocrine modulation and a role in the regulation of sleep-wake function. The in vivo role of orexin-B is not as clear. To investigate the behavioural, endocrine and neurochemical effects of orexin-B in in-vivo tests. In a number of experiments, these effects were compared with those of orexin-A. Experiments were carried out in male, Sprague-Dawley rats with a guide cannula directed towards the lateral ventricle. The effects of orexin-B (ICV) upon grooming behaviour were compared with those of orexin-A. The effects of orexin-B upon the motor activity response to both novel and familiar environments were assessed in an automated activity monitor. Orexin-B was tested upon startle reactivity and body temperature. Further, plasma hormones and [DOPAC+ HVA]/[DA] and [5-HIAA]/[5-HT] ratios in six brain areas were measured 40 min post-orexin-B or orexin-A. The clearest behavioural response to orexin-B was increased motor activity in both novel and familiar environments. Orexin-B-induced hyperactivity was blocked by an OX1 receptor antagonist, SB-334867-A, implicating OX1 receptors in this behavioural response. In common with orexin-A, orexin-B reduced plasma prolactin and failed to influence startle reactivity. However, in contrast with orexin-A, orexin-B increased head grooming but failed to cause a robust whole body grooming response or increase plasma corticosterone levels. Further, orexin-B, but not orexin-A, increased plasma TSH and increased hypothalamic and striatal [5-HIAA]/[5-HT] ratios. The present study has demonstrated a number of behavioural, neuroendocrine and neurochemical effects of orexin-B that distinguish it from orexin-A. Further, we have demonstrated a role for OX1 receptors in the actions of orexin-B upon motor activity.
ISSN:0033-3158
1432-2072
DOI:10.1007/s002130000551