Endocytosis of Uncleaved Tumor Necrosis Factor-α in Macrophages
Activated monocytes and macrophages secrete the inflammatory cytokine tumor necrosis factor-α (TNF-α). TNF-α is produced as a 26 kd transmembrane protein that is cleaved to release a 17 kd soluble protein. TNF-α in both forms is biologically active. The intracellular trafficking of membrane-associat...
Gespeichert in:
Veröffentlicht in: | Laboratory investigation 2001-01, Vol.81 (1), p.107-117 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Activated monocytes and macrophages secrete the inflammatory cytokine tumor necrosis factor-α (TNF-α). TNF-α is produced as a 26 kd transmembrane protein that is cleaved to release a 17 kd soluble protein. TNF-α in both forms is biologically active. The intracellular trafficking of membrane-associated TNF-α in lipopolysaccharide-activated mouse macrophages was assessed after treatment with the metalloprotease inhibitor BB-3103, which prevents the cleavage of pro–TNF-α. Immunoprecipitation and immunofluorescence studies showed sustained expression of cell-associated TNF-α in the presence of the inhibitor. Cell immunoreactivity and surface biotinylation revealed that uncleaved TNF-α accumulated on the cell surface and was endocytosed, appearing in intracellular vesicles. Perturbation of post-Golgi traffic blocked the surface expression of 26 kd TNF-α. Tracking a bolus of TNF-α over time in cycloheximide-treated cells confirmed that uncleaved TNF-α is first transported to the cell surface and subsequently endocytosed. Vesicular structures immunoreactive for TNF-α were identified as endosomes by double labeling. The secretory and membrane-associated endocytic trafficking of TNF-α provides a mechanism for modulating the quantity of biologically active 26 kd TNF-α expressed on macrophages, allowing regulation of paracrine and autocrine responses. |
---|---|
ISSN: | 0023-6837 1530-0307 |
DOI: | 10.1038/labinvest.3780216 |