Endocytosis of Uncleaved Tumor Necrosis Factor-α in Macrophages

Activated monocytes and macrophages secrete the inflammatory cytokine tumor necrosis factor-α (TNF-α). TNF-α is produced as a 26 kd transmembrane protein that is cleaved to release a 17 kd soluble protein. TNF-α in both forms is biologically active. The intracellular trafficking of membrane-associat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laboratory investigation 2001-01, Vol.81 (1), p.107-117
Hauptverfasser: Shurety, Wenda, Pagan, Julia K, Prins, Johannes B, Stow, Jennifer L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activated monocytes and macrophages secrete the inflammatory cytokine tumor necrosis factor-α (TNF-α). TNF-α is produced as a 26 kd transmembrane protein that is cleaved to release a 17 kd soluble protein. TNF-α in both forms is biologically active. The intracellular trafficking of membrane-associated TNF-α in lipopolysaccharide-activated mouse macrophages was assessed after treatment with the metalloprotease inhibitor BB-3103, which prevents the cleavage of pro–TNF-α. Immunoprecipitation and immunofluorescence studies showed sustained expression of cell-associated TNF-α in the presence of the inhibitor. Cell immunoreactivity and surface biotinylation revealed that uncleaved TNF-α accumulated on the cell surface and was endocytosed, appearing in intracellular vesicles. Perturbation of post-Golgi traffic blocked the surface expression of 26 kd TNF-α. Tracking a bolus of TNF-α over time in cycloheximide-treated cells confirmed that uncleaved TNF-α is first transported to the cell surface and subsequently endocytosed. Vesicular structures immunoreactive for TNF-α were identified as endosomes by double labeling. The secretory and membrane-associated endocytic trafficking of TNF-α provides a mechanism for modulating the quantity of biologically active 26 kd TNF-α expressed on macrophages, allowing regulation of paracrine and autocrine responses.
ISSN:0023-6837
1530-0307
DOI:10.1038/labinvest.3780216