Foregut endoderm is required at head process stages for anteriormost neural patterning in chick

Anterior definitive endoderm, the future pharynx and foregut lining, emerges from the anterior primitive streak and Hensen's node as a cell monolayer that replaces hypoblast during chick gastrulation. At early head process stages (4+ to 6; Hamburger and Hamilton) it lies beneath, lateral to and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2001-02, Vol.128 (3), p.309-320
Hauptverfasser: Withington, S, Beddington, R, Cooke, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anterior definitive endoderm, the future pharynx and foregut lining, emerges from the anterior primitive streak and Hensen's node as a cell monolayer that replaces hypoblast during chick gastrulation. At early head process stages (4+ to 6; Hamburger and Hamilton) it lies beneath, lateral to and ahead of the ingressed axial mesoderm. Removal of the monolayer beneath and ahead of the node at stage 4 is followed by normal development, the removed cells being replaced by further ingressing cells from the node. However, similar removal during stages 4+ and 5 results in a permanent window denuded of definitive endoderm, beneath prechordal mesoderm and a variable sector of anterior notochord. The foregut tunnel then fails to form, heart development is confined to separated lateral regions, and the neural tube undergoes no ventral flexures at the normal positions in brain structure. Reduction in forebrain pattern is evident by the 12-somite stage, with most neuraxes lacking telencephalon and eyes, while forebrain expressions of the transcription factor genes GANF and BF1, and of FGF8, are absent or severely reduced. When the foregut endoderm removal is delayed until stage 6, later forebrain pattern appears once again complete, despite lack of foregut formation, of ventral flexure and of heart migration. Important gene expressions within axial mesoderm (chordin, Shh and BMP7) appear unaffected in all embryos, including those due to be pattern-deleted, during the hours following the operation when anterior brain pattern is believed to be determined. A specific system of neural anterior patterning signals, rather than an anterior sector of the initially neurally induced area, is lost following operation. Heterotopic lower layer replacement operations strongly suggest that these patterning signals are positionally specific to anteriormost presumptive foregut. The homeobox gene Hex and the chick Frizbee homologue Crescent are both expressed prominently within anterior definitive endoderm at the time when removal of this tissue results in forebrain defects, and the possible implications of this are discussed. The experiments also demonstrate how stomodeal ectoderm, the tissue that will, much later, form Rathke's pouch and the anterior pituitary, is independently specified by anteriormost lower layer signals at an early stage.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.128.3.309