Estimation of respiratory parameters via fuzzy clustering

The results of monitoring respiratory parameters estimated from flow–pressure–volume measurements can be used to assess patients’ pulmonary condition, to detect poor patient–ventilator interaction and consequently to optimize the ventilator settings. A new method is proposed to obtain detailed infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2001, Vol.21 (1), p.91-105
Hauptverfasser: Babuška, R., Alic, L., Lourens, M.S., Verbraak, A.F.M., Bogaard, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The results of monitoring respiratory parameters estimated from flow–pressure–volume measurements can be used to assess patients’ pulmonary condition, to detect poor patient–ventilator interaction and consequently to optimize the ventilator settings. A new method is proposed to obtain detailed information about respiratory parameters without interfering with the expiration. By means of fuzzy clustering, the available data set is partitioned into fuzzy subsets that can be well approximated by linear regression models locally. Parameters of these models are then estimated by least-squares techniques. By analyzing the dependence of these local parameters on the location of the model in the flow–volume–pressure space, information on patients’ pulmonary condition can be gained. The effectiveness of the proposed approaches is demonstrated by analyzing the dependence of the expiratory time constant on the volume in patients with chronic obstructive pulmonary disease (COPD) and patients without COPD.
ISSN:0933-3657
1873-2860
DOI:10.1016/S0933-3657(00)00075-0